summaryrefslogtreecommitdiff
path: root/theories/ZArith/Znat.v
blob: cd258af3044361b3f92a93b1cc8c5e89c403ddf3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id$ i*)

(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *)

Require Export Arith_base.
Require Import BinPos.
Require Import BinInt.
Require Import Zcompare.
Require Import Zorder.
Require Import Decidable.
Require Import Peano_dec.
Require Import Min Max Zmin Zmax.
Require Export Compare_dec.

Open Local Scope Z_scope.

Definition neq (x y:nat) := x <> y.

(************************************************)
(** Properties of the injection from nat into Z *)

(** Injection and successor *)

Theorem inj_0 : Z_of_nat 0 = 0%Z.
Proof.
  reflexivity.
Qed.

Theorem inj_S : forall n:nat, Z_of_nat (S n) = Zsucc (Z_of_nat n).
Proof.
  intro y; induction y as [| n H];
    [ unfold Zsucc in |- *; simpl in |- *; trivial with arith
      | change (Zpos (Psucc (P_of_succ_nat n)) = Zsucc (Z_of_nat (S n))) in |- *;
	rewrite Zpos_succ_morphism; trivial with arith ].
Qed.

(** Injection and equality. *)

Theorem inj_eq : forall n m:nat, n = m -> Z_of_nat n = Z_of_nat m.
Proof.
  intros x y H; rewrite H; trivial with arith.
Qed.

Theorem inj_neq : forall n m:nat, neq n m -> Zne (Z_of_nat n) (Z_of_nat m).
Proof.
  unfold neq, Zne, not in |- *; intros x y H1 H2; apply H1; generalize H2;
    case x; case y; intros;
      [ auto with arith
	| discriminate H0
	| discriminate H0
	| simpl in H0; injection H0;
	  do 2 rewrite <- nat_of_P_o_P_of_succ_nat_eq_succ;
	    intros E; rewrite E; auto with arith ].
Qed.

Theorem inj_eq_rev : forall n m:nat, Z_of_nat n = Z_of_nat m -> n = m.
Proof.
  intros x y H.
  destruct (eq_nat_dec x y) as [H'|H']; auto.
  exfalso.
  exact (inj_neq _ _ H' H).
Qed.

Theorem inj_eq_iff : forall n m:nat, n=m <-> Z_of_nat n = Z_of_nat m.
Proof.
 split; [apply inj_eq | apply inj_eq_rev].
Qed.


(** Injection and order relations: *)

(** One way ... *)

Theorem inj_le : forall n m:nat, (n <= m)%nat -> Z_of_nat n <= Z_of_nat m.
Proof.
  intros x y; intros H; elim H;
    [ unfold Zle in |- *; elim (Zcompare_Eq_iff_eq (Z_of_nat x) (Z_of_nat x));
      intros H1 H2; rewrite H2; [ discriminate | trivial with arith ]
      | intros m H1 H2; apply Zle_trans with (Z_of_nat m);
	[ assumption | rewrite inj_S; apply Zle_succ ] ].
Qed.

Theorem inj_lt : forall n m:nat, (n < m)%nat -> Z_of_nat n < Z_of_nat m.
Proof.
  intros x y H; apply Zgt_lt; apply Zle_succ_gt; rewrite <- inj_S; apply inj_le;
    exact H.
Qed.

Theorem inj_ge : forall n m:nat, (n >= m)%nat -> Z_of_nat n >= Z_of_nat m.
Proof.
  intros x y H; apply Zle_ge; apply inj_le; apply H.
Qed.

Theorem inj_gt : forall n m:nat, (n > m)%nat -> Z_of_nat n > Z_of_nat m.
Proof.
  intros x y H; apply Zlt_gt; apply inj_lt; exact H.
Qed.

(** The other way ... *)

Theorem inj_le_rev : forall n m:nat, Z_of_nat n <= Z_of_nat m -> (n <= m)%nat.
Proof.
  intros x y H.
  destruct (le_lt_dec x y) as [H0|H0]; auto.
  exfalso.
  assert (H1:=inj_lt _ _ H0).
  red in H; red in H1.
  rewrite <- Zcompare_antisym in H; rewrite H1 in H; auto.
Qed.

Theorem inj_lt_rev : forall n m:nat, Z_of_nat n < Z_of_nat m -> (n < m)%nat.
Proof.
  intros x y H.
  destruct (le_lt_dec y x) as [H0|H0]; auto.
  exfalso.
  assert (H1:=inj_le _ _ H0).
  red in H; red in H1.
  rewrite <- Zcompare_antisym in H1; rewrite H in H1; auto.
Qed.

Theorem inj_ge_rev : forall n m:nat, Z_of_nat n >= Z_of_nat m -> (n >= m)%nat.
Proof.
  intros x y H.
  destruct (le_lt_dec y x) as [H0|H0]; auto.
  exfalso.
  assert (H1:=inj_gt _ _ H0).
  red in H; red in H1.
  rewrite <- Zcompare_antisym in H; rewrite H1 in H; auto.
Qed.

Theorem inj_gt_rev : forall n m:nat, Z_of_nat n > Z_of_nat m -> (n > m)%nat.
Proof.
  intros x y H.
  destruct (le_lt_dec x y) as [H0|H0]; auto.
  exfalso.
  assert (H1:=inj_ge _ _ H0).
  red in H; red in H1.
  rewrite <- Zcompare_antisym in H1; rewrite H in H1; auto.
Qed.

(* Both ways ... *)

Theorem inj_le_iff : forall n m:nat, (n<=m)%nat <-> Z_of_nat n <= Z_of_nat m.
Proof.
 split; [apply inj_le | apply inj_le_rev].
Qed.

Theorem inj_lt_iff : forall n m:nat, (n<m)%nat <-> Z_of_nat n < Z_of_nat m.
Proof.
 split; [apply inj_lt | apply inj_lt_rev].
Qed.

Theorem inj_ge_iff : forall n m:nat, (n>=m)%nat <-> Z_of_nat n >= Z_of_nat m.
Proof.
 split; [apply inj_ge | apply inj_ge_rev].
Qed.

Theorem inj_gt_iff : forall n m:nat, (n>m)%nat <-> Z_of_nat n > Z_of_nat m.
Proof.
 split; [apply inj_gt | apply inj_gt_rev].
Qed.

(** Injection and usual operations *)

Theorem inj_plus : forall n m:nat, Z_of_nat (n + m) = Z_of_nat n + Z_of_nat m.
Proof.
  intro x; induction x as [| n H]; intro y; destruct y as [| m];
    [ simpl in |- *; trivial with arith
      | simpl in |- *; trivial with arith
      | simpl in |- *; rewrite <- plus_n_O; trivial with arith
      | change (Z_of_nat (S (n + S m)) = Z_of_nat (S n) + Z_of_nat (S m)) in |- *;
	rewrite inj_S; rewrite H; do 2 rewrite inj_S; rewrite Zplus_succ_l;
	  trivial with arith ].
Qed.

Theorem inj_mult : forall n m:nat, Z_of_nat (n * m) = Z_of_nat n * Z_of_nat m.
Proof.
  intro x; induction x as [| n H];
    [ simpl in |- *; trivial with arith
      | intro y; rewrite inj_S; rewrite <- Zmult_succ_l_reverse; rewrite <- H;
	rewrite <- inj_plus; simpl in |- *; rewrite plus_comm;
	  trivial with arith ].
Qed.

Theorem inj_minus1 :
  forall n m:nat, (m <= n)%nat -> Z_of_nat (n - m) = Z_of_nat n - Z_of_nat m.
Proof.
  intros x y H; apply (Zplus_reg_l (Z_of_nat y)); unfold Zminus in |- *;
    rewrite Zplus_permute; rewrite Zplus_opp_r; rewrite <- inj_plus;
      rewrite <- (le_plus_minus y x H); rewrite Zplus_0_r;
        trivial with arith.
Qed.

Theorem inj_minus2 : forall n m:nat, (m > n)%nat -> Z_of_nat (n - m) = 0.
Proof.
  intros x y H; rewrite not_le_minus_0;
    [ trivial with arith | apply gt_not_le; assumption ].
Qed.

Theorem inj_minus : forall n m:nat,
 Z_of_nat (minus n m) = Zmax 0 (Z_of_nat n - Z_of_nat m).
Proof.
 intros.
 rewrite Zmax_comm.
 unfold Zmax.
 destruct (le_lt_dec m n) as [H|H].

 rewrite (inj_minus1 _ _ H).
 assert (H':=Zle_minus_le_0 _ _ (inj_le _ _ H)).
 unfold Zle in H'.
 rewrite <- Zcompare_antisym in H'.
 destruct Zcompare; simpl in *; intuition.

 rewrite (inj_minus2 _ _ H).
 assert (H':=Zplus_lt_compat_r _ _ (- Z_of_nat m) (inj_lt _ _ H)).
 rewrite Zplus_opp_r in H'.
 unfold Zminus; rewrite H'; auto.
Qed.

Theorem inj_min : forall n m:nat,
  Z_of_nat (min n m) = Zmin (Z_of_nat n) (Z_of_nat m).
Proof.
 induction n; destruct m; try (compute; auto; fail).
 simpl min.
 do 3 rewrite inj_S.
 rewrite <- Zsucc_min_distr; f_equal; auto.
Qed.

Theorem inj_max : forall n m:nat,
  Z_of_nat (max n m) = Zmax (Z_of_nat n) (Z_of_nat m).
Proof.
 induction n; destruct m; try (compute; auto; fail).
 simpl max.
 do 3 rewrite inj_S.
 rewrite <- Zsucc_max_distr; f_equal; auto.
Qed.

(** Composition of injections **)

Theorem Zpos_eq_Z_of_nat_o_nat_of_P :
  forall p:positive, Zpos p = Z_of_nat (nat_of_P p).
Proof.
  intros x; elim x; simpl in |- *; auto.
  intros p H; rewrite ZL6.
  apply f_equal with (f := Zpos).
  apply nat_of_P_inj.
  rewrite nat_of_P_o_P_of_succ_nat_eq_succ; unfold nat_of_P in |- *;
    simpl in |- *.
  rewrite ZL6; auto.
  intros p H; unfold nat_of_P in |- *; simpl in |- *.
  rewrite ZL6; simpl in |- *.
  rewrite inj_plus; repeat rewrite <- H.
  rewrite Zpos_xO; simpl in |- *; rewrite Pplus_diag; reflexivity.
Qed.

(** Misc *)

Theorem intro_Z :
  forall n:nat,  exists y : Z, Z_of_nat n = y /\ 0 <= y * 1 + 0.
Proof.
  intros x; exists (Z_of_nat x); split;
    [ trivial with arith
      | rewrite Zmult_comm; rewrite Zmult_1_l; rewrite Zplus_0_r;
	unfold Zle in |- *; elim x; intros; simpl in |- *;
          discriminate ].
Qed.

Lemma Zpos_P_of_succ_nat : forall n:nat,
 Zpos (P_of_succ_nat n) = Zsucc (Z_of_nat n).
Proof.
  intros.
  unfold Z_of_nat.
  destruct n.
  simpl; auto.
  simpl (P_of_succ_nat (S n)).
  apply Zpos_succ_morphism.
Qed.