summaryrefslogtreecommitdiff
path: root/theories/ZArith/Znat.v
blob: f0a3d47b755ea05fc1a1150153f9dc79a6724e83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Znat.v 9302 2006-10-27 21:21:17Z barras $ i*)

(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *)

Require Export Arith_base.
Require Import BinPos.
Require Import BinInt.
Require Import Zcompare.
Require Import Zorder.
Require Import Decidable.
Require Import Peano_dec.
Require Export Compare_dec.

Open Local Scope Z_scope.

Definition neq (x y:nat) := x <> y.

(************************************************)
(** Properties of the injection from nat into Z *)

Theorem inj_S : forall n:nat, Z_of_nat (S n) = Zsucc (Z_of_nat n).
Proof.
  intro y; induction y as [| n H];
    [ unfold Zsucc in |- *; simpl in |- *; trivial with arith
      | change (Zpos (Psucc (P_of_succ_nat n)) = Zsucc (Z_of_nat (S n))) in |- *;
	rewrite Zpos_succ_morphism; trivial with arith ].
Qed.
 
Theorem inj_plus : forall n m:nat, Z_of_nat (n + m) = Z_of_nat n + Z_of_nat m.
Proof.
  intro x; induction x as [| n H]; intro y; destruct y as [| m];
    [ simpl in |- *; trivial with arith
      | simpl in |- *; trivial with arith
      | simpl in |- *; rewrite <- plus_n_O; trivial with arith
      | change (Z_of_nat (S (n + S m)) = Z_of_nat (S n) + Z_of_nat (S m)) in |- *;
	rewrite inj_S; rewrite H; do 2 rewrite inj_S; rewrite Zplus_succ_l;
	  trivial with arith ].
Qed.

Theorem inj_mult : forall n m:nat, Z_of_nat (n * m) = Z_of_nat n * Z_of_nat m.
Proof.
  intro x; induction x as [| n H];
    [ simpl in |- *; trivial with arith
      | intro y; rewrite inj_S; rewrite <- Zmult_succ_l_reverse; rewrite <- H;
	rewrite <- inj_plus; simpl in |- *; rewrite plus_comm; 
	  trivial with arith ].
Qed.

Theorem inj_neq : forall n m:nat, neq n m -> Zne (Z_of_nat n) (Z_of_nat m).
Proof.
  unfold neq, Zne, not in |- *; intros x y H1 H2; apply H1; generalize H2;
    case x; case y; intros;
      [ auto with arith
	| discriminate H0
	| discriminate H0
	| simpl in H0; injection H0;
	  do 2 rewrite <- nat_of_P_o_P_of_succ_nat_eq_succ; 
	    intros E; rewrite E; auto with arith ].
Qed. 

Theorem inj_le : forall n m:nat, (n <= m)%nat -> Z_of_nat n <= Z_of_nat m.
Proof.
  intros x y; intros H; elim H;
    [ unfold Zle in |- *; elim (Zcompare_Eq_iff_eq (Z_of_nat x) (Z_of_nat x));
      intros H1 H2; rewrite H2; [ discriminate | trivial with arith ]
      | intros m H1 H2; apply Zle_trans with (Z_of_nat m);
	[ assumption | rewrite inj_S; apply Zle_succ ] ].
Qed.

Theorem inj_lt : forall n m:nat, (n < m)%nat -> Z_of_nat n < Z_of_nat m.
Proof.
  intros x y H; apply Zgt_lt; apply Zlt_succ_gt; rewrite <- inj_S; apply inj_le;
    exact H.
Qed.

Theorem inj_gt : forall n m:nat, (n > m)%nat -> Z_of_nat n > Z_of_nat m.
Proof.
  intros x y H; apply Zlt_gt; apply inj_lt; exact H.
Qed.

Theorem inj_ge : forall n m:nat, (n >= m)%nat -> Z_of_nat n >= Z_of_nat m.
Proof.
  intros x y H; apply Zle_ge; apply inj_le; apply H.
Qed.

Theorem inj_eq : forall n m:nat, n = m -> Z_of_nat n = Z_of_nat m.
Proof.
  intros x y H; rewrite H; trivial with arith.
Qed.

Theorem intro_Z :
  forall n:nat,  exists y : Z, Z_of_nat n = y /\ 0 <= y * 1 + 0.
Proof.
  intros x; exists (Z_of_nat x); split;
    [ trivial with arith
      | rewrite Zmult_comm; rewrite Zmult_1_l; rewrite Zplus_0_r;
	unfold Zle in |- *; elim x; intros; simpl in |- *; 
          discriminate ].
Qed.

Theorem inj_minus1 :
  forall n m:nat, (m <= n)%nat -> Z_of_nat (n - m) = Z_of_nat n - Z_of_nat m.
Proof.
  intros x y H; apply (Zplus_reg_l (Z_of_nat y)); unfold Zminus in |- *;
    rewrite Zplus_permute; rewrite Zplus_opp_r; rewrite <- inj_plus;
      rewrite <- (le_plus_minus y x H); rewrite Zplus_0_r; 
        trivial with arith.
Qed.
 
Theorem inj_minus2 : forall n m:nat, (m > n)%nat -> Z_of_nat (n - m) = 0.
Proof.
  intros x y H; rewrite not_le_minus_0;
    [ trivial with arith | apply gt_not_le; assumption ].
Qed.

Theorem Zpos_eq_Z_of_nat_o_nat_of_P :
  forall p:positive, Zpos p = Z_of_nat (nat_of_P p).
Proof.
  intros x; elim x; simpl in |- *; auto.
  intros p H; rewrite ZL6.
  apply f_equal with (f := Zpos).
  apply nat_of_P_inj.
  rewrite nat_of_P_o_P_of_succ_nat_eq_succ; unfold nat_of_P in |- *;
    simpl in |- *.
  rewrite ZL6; auto.
  intros p H; unfold nat_of_P in |- *; simpl in |- *.
  rewrite ZL6; simpl in |- *.
  rewrite inj_plus; repeat rewrite <- H.
  rewrite Zpos_xO; simpl in |- *; rewrite Pplus_diag; reflexivity.
Qed.