1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Zmisc.v,v 1.20.2.1 2004/07/16 19:31:22 herbelin Exp $ i*)
Require Import BinInt.
Require Import Zcompare.
Require Import Zorder.
Require Import Bool.
Open Local Scope Z_scope.
(**********************************************************************)
(** Iterators *)
(** [n]th iteration of the function [f] *)
Fixpoint iter_nat (n:nat) (A:Set) (f:A -> A) (x:A) {struct n} : A :=
match n with
| O => x
| S n' => f (iter_nat n' A f x)
end.
Fixpoint iter_pos (n:positive) (A:Set) (f:A -> A) (x:A) {struct n} : A :=
match n with
| xH => f x
| xO n' => iter_pos n' A f (iter_pos n' A f x)
| xI n' => f (iter_pos n' A f (iter_pos n' A f x))
end.
Definition iter (n:Z) (A:Set) (f:A -> A) (x:A) :=
match n with
| Z0 => x
| Zpos p => iter_pos p A f x
| Zneg p => x
end.
Theorem iter_nat_plus :
forall (n m:nat) (A:Set) (f:A -> A) (x:A),
iter_nat (n + m) A f x = iter_nat n A f (iter_nat m A f x).
Proof.
simple induction n;
[ simpl in |- *; auto with arith
| intros; simpl in |- *; apply f_equal with (f := f); apply H ].
Qed.
Theorem iter_nat_of_P :
forall (p:positive) (A:Set) (f:A -> A) (x:A),
iter_pos p A f x = iter_nat (nat_of_P p) A f x.
Proof.
intro n; induction n as [p H| p H| ];
[ intros; simpl in |- *; rewrite (H A f x);
rewrite (H A f (iter_nat (nat_of_P p) A f x));
rewrite (ZL6 p); symmetry in |- *; apply f_equal with (f := f);
apply iter_nat_plus
| intros; unfold nat_of_P in |- *; simpl in |- *; rewrite (H A f x);
rewrite (H A f (iter_nat (nat_of_P p) A f x));
rewrite (ZL6 p); symmetry in |- *; apply iter_nat_plus
| simpl in |- *; auto with arith ].
Qed.
Theorem iter_pos_plus :
forall (p q:positive) (A:Set) (f:A -> A) (x:A),
iter_pos (p + q) A f x = iter_pos p A f (iter_pos q A f x).
Proof.
intros n m; intros.
rewrite (iter_nat_of_P m A f x).
rewrite (iter_nat_of_P n A f (iter_nat (nat_of_P m) A f x)).
rewrite (iter_nat_of_P (n + m) A f x).
rewrite (nat_of_P_plus_morphism n m).
apply iter_nat_plus.
Qed.
(** Preservation of invariants : if [f : A->A] preserves the invariant [Inv],
then the iterates of [f] also preserve it. *)
Theorem iter_nat_invariant :
forall (n:nat) (A:Set) (f:A -> A) (Inv:A -> Prop),
(forall x:A, Inv x -> Inv (f x)) ->
forall x:A, Inv x -> Inv (iter_nat n A f x).
Proof.
simple induction n; intros;
[ trivial with arith
| simpl in |- *; apply H0 with (x := iter_nat n0 A f x); apply H;
trivial with arith ].
Qed.
Theorem iter_pos_invariant :
forall (p:positive) (A:Set) (f:A -> A) (Inv:A -> Prop),
(forall x:A, Inv x -> Inv (f x)) ->
forall x:A, Inv x -> Inv (iter_pos p A f x).
Proof.
intros; rewrite iter_nat_of_P; apply iter_nat_invariant; trivial with arith.
Qed.
|