1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Zhints.v,v 1.8.2.1 2004/07/16 19:31:21 herbelin Exp $ i*)
(** This file centralizes the lemmas about [Z], classifying them
according to the way they can be used in automatic search *)
(*i*)
(* Lemmas which clearly leads to simplification during proof search are *)
(* declared as Hints. A definite status (Hint or not) for the other lemmas *)
(* remains to be given *)
(* Structure of the file *)
(* - simplification lemmas (only those are declared as Hints) *)
(* - reversible lemmas relating operators *)
(* - useful Bottom-up lemmas *)
(* - irreversible lemmas with meta-variables *)
(* - unclear or too specific lemmas *)
(* - lemmas to be used as rewrite rules *)
(* Lemmas involving positive and compare are not taken into account *)
Require Import BinInt.
Require Import Zorder.
Require Import Zmin.
Require Import Zabs.
Require Import Zcompare.
Require Import Znat.
Require Import auxiliary.
Require Import Zmisc.
Require Import Wf_Z.
(**********************************************************************)
(* Simplification lemmas *)
(* No subgoal or smaller subgoals *)
Hint Resolve
(* A) Reversible simplification lemmas (no loss of information) *)
(* Should clearly declared as hints *)
(* Lemmas ending by eq *)
Zsucc_eq_compat (* :(n,m:Z)`n = m`->`(Zs n) = (Zs m)` *)
(* Lemmas ending by Zgt *)
Zsucc_gt_compat (* :(n,m:Z)`m > n`->`(Zs m) > (Zs n)` *)
Zgt_succ (* :(n:Z)`(Zs n) > n` *)
Zorder.Zgt_pos_0 (* :(p:positive)`(POS p) > 0` *)
Zplus_gt_compat_l (* :(n,m,p:Z)`n > m`->`p+n > p+m` *)
Zplus_gt_compat_r (* :(n,m,p:Z)`n > m`->`n+p > m+p` *)
(* Lemmas ending by Zlt *)
Zlt_succ (* :(n:Z)`n < (Zs n)` *)
Zsucc_lt_compat (* :(n,m:Z)`n < m`->`(Zs n) < (Zs m)` *)
Zlt_pred (* :(n:Z)`(Zpred n) < n` *)
Zplus_lt_compat_l (* :(n,m,p:Z)`n < m`->`p+n < p+m` *)
Zplus_lt_compat_r (* :(n,m,p:Z)`n < m`->`n+p < m+p` *)
(* Lemmas ending by Zle *)
Zle_0_nat (* :(n:nat)`0 <= (inject_nat n)` *)
Zorder.Zle_0_pos (* :(p:positive)`0 <= (POS p)` *)
Zle_refl (* :(n:Z)`n <= n` *)
Zle_succ (* :(n:Z)`n <= (Zs n)` *)
Zsucc_le_compat (* :(n,m:Z)`m <= n`->`(Zs m) <= (Zs n)` *)
Zle_pred (* :(n:Z)`(Zpred n) <= n` *)
Zle_min_l (* :(n,m:Z)`(Zmin n m) <= n` *)
Zle_min_r (* :(n,m:Z)`(Zmin n m) <= m` *)
Zplus_le_compat_l (* :(n,m,p:Z)`n <= m`->`p+n <= p+m` *)
Zplus_le_compat_r (* :(a,b,c:Z)`a <= b`->`a+c <= b+c` *)
Zabs_pos (* :(x:Z)`0 <= |x|` *)
(* B) Irreversible simplification lemmas : Probably to be declared as *)
(* hints, when no other simplification is possible *)
(* Lemmas ending by eq *)
BinInt.Z_eq_mult (* :(x,y:Z)`y = 0`->`y*x = 0` *)
Zplus_eq_compat (* :(n,m,p,q:Z)`n = m`->`p = q`->`n+p = m+q` *)
(* Lemmas ending by Zge *)
Zorder.Zmult_ge_compat_r (* :(a,b,c:Z)`a >= b`->`c >= 0`->`a*c >= b*c` *)
Zorder.Zmult_ge_compat_l (* :(a,b,c:Z)`a >= b`->`c >= 0`->`c*a >= c*b` *)
Zorder.Zmult_ge_compat (* :
(a,b,c,d:Z)`a >= c`->`b >= d`->`c >= 0`->`d >= 0`->`a*b >= c*d` *)
(* Lemmas ending by Zlt *)
Zorder.Zmult_gt_0_compat (* :(a,b:Z)`a > 0`->`b > 0`->`a*b > 0` *)
Zlt_lt_succ (* :(n,m:Z)`n < m`->`n < (Zs m)` *)
(* Lemmas ending by Zle *)
Zorder.Zmult_le_0_compat (* :(x,y:Z)`0 <= x`->`0 <= y`->`0 <= x*y` *)
Zorder.Zmult_le_compat_r (* :(a,b,c:Z)`a <= b`->`0 <= c`->`a*c <= b*c` *)
Zorder.Zmult_le_compat_l (* :(a,b,c:Z)`a <= b`->`0 <= c`->`c*a <= c*b` *)
Zplus_le_0_compat (* :(x,y:Z)`0 <= x`->`0 <= y`->`0 <= x+y` *)
Zle_le_succ (* :(x,y:Z)`x <= y`->`x <= (Zs y)` *)
Zplus_le_compat (* :(n,m,p,q:Z)`n <= m`->`p <= q`->`n+p <= m+q` *)
: zarith.
(**********************************************************************)
(* Reversible lemmas relating operators *)
(* Probably to be declared as hints but need to define precedences *)
(* A) Conversion between comparisons/predicates and arithmetic operators
(* Lemmas ending by eq *)
Zegal_left: (x,y:Z)`x = y`->`x+(-y) = 0`
Zabs_eq: (x:Z)`0 <= x`->`|x| = x`
Zeven_div2: (x:Z)(Zeven x)->`x = 2*(Zdiv2 x)`
Zodd_div2: (x:Z)`x >= 0`->(Zodd x)->`x = 2*(Zdiv2 x)+1`
(* Lemmas ending by Zgt *)
Zgt_left_rev: (x,y:Z)`x+(-y) > 0`->`x > y`
Zgt_left_gt: (x,y:Z)`x > y`->`x+(-y) > 0`
(* Lemmas ending by Zlt *)
Zlt_left_rev: (x,y:Z)`0 < y+(-x)`->`x < y`
Zlt_left_lt: (x,y:Z)`x < y`->`0 < y+(-x)`
Zlt_O_minus_lt: (n,m:Z)`0 < n-m`->`m < n`
(* Lemmas ending by Zle *)
Zle_left: (x,y:Z)`x <= y`->`0 <= y+(-x)`
Zle_left_rev: (x,y:Z)`0 <= y+(-x)`->`x <= y`
Zlt_left: (x,y:Z)`x < y`->`0 <= y+(-1)+(-x)`
Zge_left: (x,y:Z)`x >= y`->`0 <= x+(-y)`
Zgt_left: (x,y:Z)`x > y`->`0 <= x+(-1)+(-y)`
(* B) Conversion between nat comparisons and Z comparisons *)
(* Lemmas ending by eq *)
inj_eq: (x,y:nat)x=y->`(inject_nat x) = (inject_nat y)`
(* Lemmas ending by Zge *)
inj_ge: (x,y:nat)(ge x y)->`(inject_nat x) >= (inject_nat y)`
(* Lemmas ending by Zgt *)
inj_gt: (x,y:nat)(gt x y)->`(inject_nat x) > (inject_nat y)`
(* Lemmas ending by Zlt *)
inj_lt: (x,y:nat)(lt x y)->`(inject_nat x) < (inject_nat y)`
(* Lemmas ending by Zle *)
inj_le: (x,y:nat)(le x y)->`(inject_nat x) <= (inject_nat y)`
(* C) Conversion between comparisons *)
(* Lemmas ending by Zge *)
not_Zlt: (x,y:Z)~`x < y`->`x >= y`
Zle_ge: (m,n:Z)`m <= n`->`n >= m`
(* Lemmas ending by Zgt *)
Zle_gt_S: (n,p:Z)`n <= p`->`(Zs p) > n`
not_Zle: (x,y:Z)~`x <= y`->`x > y`
Zlt_gt: (m,n:Z)`m < n`->`n > m`
Zle_S_gt: (n,m:Z)`(Zs n) <= m`->`m > n`
(* Lemmas ending by Zlt *)
not_Zge: (x,y:Z)~`x >= y`->`x < y`
Zgt_lt: (m,n:Z)`m > n`->`n < m`
Zle_lt_n_Sm: (n,m:Z)`n <= m`->`n < (Zs m)`
(* Lemmas ending by Zle *)
Zlt_ZERO_pred_le_ZERO: (x:Z)`0 < x`->`0 <= (Zpred x)`
not_Zgt: (x,y:Z)~`x > y`->`x <= y`
Zgt_le_S: (n,p:Z)`p > n`->`(Zs n) <= p`
Zgt_S_le: (n,p:Z)`(Zs p) > n`->`n <= p`
Zge_le: (m,n:Z)`m >= n`->`n <= m`
Zlt_le_S: (n,p:Z)`n < p`->`(Zs n) <= p`
Zlt_n_Sm_le: (n,m:Z)`n < (Zs m)`->`n <= m`
Zlt_le_weak: (n,m:Z)`n < m`->`n <= m`
Zle_refl: (n,m:Z)`n = m`->`n <= m`
(* D) Irreversible simplification involving several comparaisons, *)
(* useful with clear precedences *)
(* Lemmas ending by Zlt *)
Zlt_le_reg :(a,b,c,d:Z)`a < b`->`c <= d`->`a+c < b+d`
Zle_lt_reg : (a,b,c,d:Z)`a <= b`->`c < d`->`a+c < b+d`
(* D) What is decreasing here ? *)
(* Lemmas ending by eq *)
Zplus_minus: (n,m,p:Z)`n = m+p`->`p = n-m`
(* Lemmas ending by Zgt *)
Zgt_pred: (n,p:Z)`p > (Zs n)`->`(Zpred p) > n`
(* Lemmas ending by Zlt *)
Zlt_pred: (n,p:Z)`(Zs n) < p`->`n < (Zpred p)`
*)
(**********************************************************************)
(* Useful Bottom-up lemmas *)
(* A) Bottom-up simplification: should be used
(* Lemmas ending by eq *)
Zeq_add_S: (n,m:Z)`(Zs n) = (Zs m)`->`n = m`
Zsimpl_plus_l: (n,m,p:Z)`n+m = n+p`->`m = p`
Zplus_unit_left: (n,m:Z)`n+0 = m`->`n = m`
Zplus_unit_right: (n,m:Z)`n = m+0`->`n = m`
(* Lemmas ending by Zgt *)
Zsimpl_gt_plus_l: (n,m,p:Z)`p+n > p+m`->`n > m`
Zsimpl_gt_plus_r: (n,m,p:Z)`n+p > m+p`->`n > m`
Zgt_S_n: (n,p:Z)`(Zs p) > (Zs n)`->`p > n`
(* Lemmas ending by Zlt *)
Zsimpl_lt_plus_l: (n,m,p:Z)`p+n < p+m`->`n < m`
Zsimpl_lt_plus_r: (n,m,p:Z)`n+p < m+p`->`n < m`
Zlt_S_n: (n,m:Z)`(Zs n) < (Zs m)`->`n < m`
(* Lemmas ending by Zle *)
Zsimpl_le_plus_l: (p,n,m:Z)`p+n <= p+m`->`n <= m`
Zsimpl_le_plus_r: (p,n,m:Z)`n+p <= m+p`->`n <= m`
Zle_S_n: (n,m:Z)`(Zs m) <= (Zs n)`->`m <= n`
(* B) Bottom-up irreversible (syntactic) simplification *)
(* Lemmas ending by Zle *)
Zle_trans_S: (n,m:Z)`(Zs n) <= m`->`n <= m`
(* C) Other unclearly simplifying lemmas *)
(* Lemmas ending by Zeq *)
Zmult_eq: (x,y:Z)`x <> 0`->`y*x = 0`->`y = 0`
(* Lemmas ending by Zgt *)
Zmult_gt: (x,y:Z)`x > 0`->`x*y > 0`->`y > 0`
(* Lemmas ending by Zlt *)
pZmult_lt: (x,y:Z)`x > 0`->`0 < y*x`->`0 < y`
(* Lemmas ending by Zle *)
Zmult_le: (x,y:Z)`x > 0`->`0 <= y*x`->`0 <= y`
OMEGA1: (x,y:Z)`x = y`->`0 <= x`->`0 <= y`
*)
(**********************************************************************)
(* Irreversible lemmas with meta-variables *)
(* To be used by EAuto
Hints Immediate
(* Lemmas ending by eq *)
Zle_antisym: (n,m:Z)`n <= m`->`m <= n`->`n = m`
(* Lemmas ending by Zge *)
Zge_trans: (n,m,p:Z)`n >= m`->`m >= p`->`n >= p`
(* Lemmas ending by Zgt *)
Zgt_trans: (n,m,p:Z)`n > m`->`m > p`->`n > p`
Zgt_trans_S: (n,m,p:Z)`(Zs n) > m`->`m > p`->`n > p`
Zle_gt_trans: (n,m,p:Z)`m <= n`->`m > p`->`n > p`
Zgt_le_trans: (n,m,p:Z)`n > m`->`p <= m`->`n > p`
(* Lemmas ending by Zlt *)
Zlt_trans: (n,m,p:Z)`n < m`->`m < p`->`n < p`
Zlt_le_trans: (n,m,p:Z)`n < m`->`m <= p`->`n < p`
Zle_lt_trans: (n,m,p:Z)`n <= m`->`m < p`->`n < p`
(* Lemmas ending by Zle *)
Zle_trans: (n,m,p:Z)`n <= m`->`m <= p`->`n <= p`
*)
(**********************************************************************)
(* Unclear or too specific lemmas *)
(* Not to be used ?? *)
(* A) Irreversible and too specific (not enough regular)
(* Lemmas ending by Zle *)
Zle_mult: (x,y:Z)`x > 0`->`0 <= y`->`0 <= y*x`
Zle_mult_approx: (x,y,z:Z)`x > 0`->`z > 0`->`0 <= y`->`0 <= y*x+z`
OMEGA6: (x,y,z:Z)`0 <= x`->`y = 0`->`0 <= x+y*z`
OMEGA7: (x,y,z,t:Z)`z > 0`->`t > 0`->`0 <= x`->`0 <= y`->`0 <= x*z+y*t`
(* B) Expansion and too specific ? *)
(* Lemmas ending by Zge *)
Zge_mult_simpl: (a,b,c:Z)`c > 0`->`a*c >= b*c`->`a >= b`
(* Lemmas ending by Zgt *)
Zgt_mult_simpl: (a,b,c:Z)`c > 0`->`a*c > b*c`->`a > b`
Zgt_square_simpl: (x,y:Z)`x >= 0`->`y >= 0`->`x*x > y*y`->`x > y`
(* Lemmas ending by Zle *)
Zle_mult_simpl: (a,b,c:Z)`c > 0`->`a*c <= b*c`->`a <= b`
Zmult_le_approx: (x,y,z:Z)`x > 0`->`x > z`->`0 <= y*x+z`->`0 <= y`
(* C) Reversible but too specific ? *)
(* Lemmas ending by Zlt *)
Zlt_minus: (n,m:Z)`0 < m`->`n-m < n`
*)
(**********************************************************************)
(* Lemmas to be used as rewrite rules *)
(* but can also be used as hints
(* Left-to-right simplification lemmas (a symbol disappears) *)
Zcompare_n_S: (n,m:Z)(Zcompare (Zs n) (Zs m))=(Zcompare n m)
Zmin_n_n: (n:Z)`(Zmin n n) = n`
Zmult_1_n: (n:Z)`1*n = n`
Zmult_n_1: (n:Z)`n*1 = n`
Zminus_plus: (n,m:Z)`n+m-n = m`
Zle_plus_minus: (n,m:Z)`n+(m-n) = m`
Zopp_Zopp: (x:Z)`(-(-x)) = x`
Zero_left: (x:Z)`0+x = x`
Zero_right: (x:Z)`x+0 = x`
Zplus_inverse_r: (x:Z)`x+(-x) = 0`
Zplus_inverse_l: (x:Z)`(-x)+x = 0`
Zopp_intro: (x,y:Z)`(-x) = (-y)`->`x = y`
Zmult_one: (x:Z)`1*x = x`
Zero_mult_left: (x:Z)`0*x = 0`
Zero_mult_right: (x:Z)`x*0 = 0`
Zmult_Zopp_Zopp: (x,y:Z)`(-x)*(-y) = x*y`
(* Right-to-left simplification lemmas (a symbol disappears) *)
Zpred_Sn: (m:Z)`m = (Zpred (Zs m))`
Zs_pred: (n:Z)`n = (Zs (Zpred n))`
Zplus_n_O: (n:Z)`n = n+0`
Zmult_n_O: (n:Z)`0 = n*0`
Zminus_n_O: (n:Z)`n = n-0`
Zminus_n_n: (n:Z)`0 = n-n`
Zred_factor6: (x:Z)`x = x+0`
Zred_factor0: (x:Z)`x = x*1`
(* Unclear orientation (no symbol disappears) *)
Zplus_n_Sm: (n,m:Z)`(Zs (n+m)) = n+(Zs m)`
Zmult_n_Sm: (n,m:Z)`n*m+n = n*(Zs m)`
Zmin_SS: (n,m:Z)`(Zs (Zmin n m)) = (Zmin (Zs n) (Zs m))`
Zplus_assoc_l: (n,m,p:Z)`n+(m+p) = n+m+p`
Zplus_assoc_r: (n,m,p:Z)`n+m+p = n+(m+p)`
Zplus_permute: (n,m,p:Z)`n+(m+p) = m+(n+p)`
Zplus_Snm_nSm: (n,m:Z)`(Zs n)+m = n+(Zs m)`
Zminus_plus_simpl: (n,m,p:Z)`n-m = p+n-(p+m)`
Zminus_Sn_m: (n,m:Z)`(Zs (n-m)) = (Zs n)-m`
Zmult_plus_distr_l: (n,m,p:Z)`(n+m)*p = n*p+m*p`
Zmult_minus_distr: (n,m,p:Z)`(n-m)*p = n*p-m*p`
Zmult_assoc_r: (n,m,p:Z)`n*m*p = n*(m*p)`
Zmult_assoc_l: (n,m,p:Z)`n*(m*p) = n*m*p`
Zmult_permute: (n,m,p:Z)`n*(m*p) = m*(n*p)`
Zmult_Sm_n: (n,m:Z)`n*m+m = (Zs n)*m`
Zmult_Zplus_distr: (x,y,z:Z)`x*(y+z) = x*y+x*z`
Zmult_plus_distr: (n,m,p:Z)`(n+m)*p = n*p+m*p`
Zopp_Zplus: (x,y:Z)`(-(x+y)) = (-x)+(-y)`
Zplus_sym: (x,y:Z)`x+y = y+x`
Zplus_assoc: (x,y,z:Z)`x+(y+z) = x+y+z`
Zmult_sym: (x,y:Z)`x*y = y*x`
Zmult_assoc: (x,y,z:Z)`x*(y*z) = x*y*z`
Zopp_Zmult: (x,y:Z)`(-x)*y = (-(x*y))`
Zplus_S_n: (x,y:Z)`(Zs x)+y = (Zs (x+y))`
Zopp_one: (x:Z)`(-x) = x*(-1)`
Zopp_Zmult_r: (x,y:Z)`(-(x*y)) = x*(-y)`
Zmult_Zopp_left: (x,y:Z)`(-x)*y = x*(-y)`
Zopp_Zmult_l: (x,y:Z)`(-(x*y)) = (-x)*y`
Zred_factor1: (x:Z)`x+x = x*2`
Zred_factor2: (x,y:Z)`x+x*y = x*(1+y)`
Zred_factor3: (x,y:Z)`x*y+x = x*(1+y)`
Zred_factor4: (x,y,z:Z)`x*y+x*z = x*(y+z)`
Zminus_Zplus_compatible: (x,y,n:Z)`x+n-(y+n) = x-y`
Zmin_plus: (x,y,n:Z)`(Zmin (x+n) (y+n)) = (Zmin x y)+n`
(* nat <-> Z *)
inj_S: (y:nat)`(inject_nat (S y)) = (Zs (inject_nat y))`
inj_plus: (x,y:nat)`(inject_nat (plus x y)) = (inject_nat x)+(inject_nat y)`
inj_mult: (x,y:nat)`(inject_nat (mult x y)) = (inject_nat x)*(inject_nat y)`
inj_minus1:
(x,y:nat)(le y x)->`(inject_nat (minus x y)) = (inject_nat x)-(inject_nat y)`
inj_minus2: (x,y:nat)(gt y x)->`(inject_nat (minus x y)) = 0`
(* Too specific ? *)
Zred_factor5: (x,y:Z)`x*0+y = y`
*)
(*i*)
|