1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Zeven.v 9245 2006-10-17 12:53:34Z notin $ i*)
Require Import BinInt.
(*******************************************************************)
(** About parity: even and odd predicates on Z, division by 2 on Z *)
(***************************************************)
(** * [Zeven], [Zodd] and their related properties *)
Definition Zeven (z:Z) :=
match z with
| Z0 => True
| Zpos (xO _) => True
| Zneg (xO _) => True
| _ => False
end.
Definition Zodd (z:Z) :=
match z with
| Zpos xH => True
| Zneg xH => True
| Zpos (xI _) => True
| Zneg (xI _) => True
| _ => False
end.
Definition Zeven_bool (z:Z) :=
match z with
| Z0 => true
| Zpos (xO _) => true
| Zneg (xO _) => true
| _ => false
end.
Definition Zodd_bool (z:Z) :=
match z with
| Z0 => false
| Zpos (xO _) => false
| Zneg (xO _) => false
| _ => true
end.
Definition Zeven_odd_dec : forall z:Z, {Zeven z} + {Zodd z}.
Proof.
intro z. case z;
[ left; compute in |- *; trivial
| intro p; case p; intros;
(right; compute in |- *; exact I) || (left; compute in |- *; exact I)
| intro p; case p; intros;
(right; compute in |- *; exact I) || (left; compute in |- *; exact I) ].
Defined.
Definition Zeven_dec : forall z:Z, {Zeven z} + {~ Zeven z}.
Proof.
intro z. case z;
[ left; compute in |- *; trivial
| intro p; case p; intros;
(left; compute in |- *; exact I) || (right; compute in |- *; trivial)
| intro p; case p; intros;
(left; compute in |- *; exact I) || (right; compute in |- *; trivial) ].
Defined.
Definition Zodd_dec : forall z:Z, {Zodd z} + {~ Zodd z}.
Proof.
intro z. case z;
[ right; compute in |- *; trivial
| intro p; case p; intros;
(left; compute in |- *; exact I) || (right; compute in |- *; trivial)
| intro p; case p; intros;
(left; compute in |- *; exact I) || (right; compute in |- *; trivial) ].
Defined.
Lemma Zeven_not_Zodd : forall n:Z, Zeven n -> ~ Zodd n.
Proof.
intro z; destruct z; [ idtac | destruct p | destruct p ]; compute in |- *;
trivial.
Qed.
Lemma Zodd_not_Zeven : forall n:Z, Zodd n -> ~ Zeven n.
Proof.
intro z; destruct z; [ idtac | destruct p | destruct p ]; compute in |- *;
trivial.
Qed.
Lemma Zeven_Sn : forall n:Z, Zodd n -> Zeven (Zsucc n).
Proof.
intro z; destruct z; unfold Zsucc in |- *;
[ idtac | destruct p | destruct p ]; simpl in |- *;
trivial.
unfold Pdouble_minus_one in |- *; case p; simpl in |- *; auto.
Qed.
Lemma Zodd_Sn : forall n:Z, Zeven n -> Zodd (Zsucc n).
Proof.
intro z; destruct z; unfold Zsucc in |- *;
[ idtac | destruct p | destruct p ]; simpl in |- *;
trivial.
unfold Pdouble_minus_one in |- *; case p; simpl in |- *; auto.
Qed.
Lemma Zeven_pred : forall n:Z, Zodd n -> Zeven (Zpred n).
Proof.
intro z; destruct z; unfold Zpred in |- *;
[ idtac | destruct p | destruct p ]; simpl in |- *;
trivial.
unfold Pdouble_minus_one in |- *; case p; simpl in |- *; auto.
Qed.
Lemma Zodd_pred : forall n:Z, Zeven n -> Zodd (Zpred n).
Proof.
intro z; destruct z; unfold Zpred in |- *;
[ idtac | destruct p | destruct p ]; simpl in |- *;
trivial.
unfold Pdouble_minus_one in |- *; case p; simpl in |- *; auto.
Qed.
Hint Unfold Zeven Zodd: zarith.
(******************************************************************)
(** * Definition of [Zdiv2] and properties wrt [Zeven] and [Zodd] *)
(** [Zdiv2] is defined on all [Z], but notice that for odd negative
integers it is not the euclidean quotient: in that case we have
[n = 2*(n/2)-1] *)
Definition Zdiv2 (z:Z) :=
match z with
| Z0 => 0%Z
| Zpos xH => 0%Z
| Zpos p => Zpos (Pdiv2 p)
| Zneg xH => 0%Z
| Zneg p => Zneg (Pdiv2 p)
end.
Lemma Zeven_div2 : forall n:Z, Zeven n -> n = (2 * Zdiv2 n)%Z.
Proof.
intro x; destruct x.
auto with arith.
destruct p; auto with arith.
intros. absurd (Zeven (Zpos (xI p))); red in |- *; auto with arith.
intros. absurd (Zeven 1); red in |- *; auto with arith.
destruct p; auto with arith.
intros. absurd (Zeven (Zneg (xI p))); red in |- *; auto with arith.
intros. absurd (Zeven (-1)); red in |- *; auto with arith.
Qed.
Lemma Zodd_div2 : forall n:Z, (n >= 0)%Z -> Zodd n -> n = (2 * Zdiv2 n + 1)%Z.
Proof.
intro x; destruct x.
intros. absurd (Zodd 0); red in |- *; auto with arith.
destruct p; auto with arith.
intros. absurd (Zodd (Zpos (xO p))); red in |- *; auto with arith.
intros. absurd (Zneg p >= 0)%Z; red in |- *; auto with arith.
Qed.
Lemma Zodd_div2_neg :
forall n:Z, (n <= 0)%Z -> Zodd n -> n = (2 * Zdiv2 n - 1)%Z.
Proof.
intro x; destruct x.
intros. absurd (Zodd 0); red in |- *; auto with arith.
intros. absurd (Zneg p >= 0)%Z; red in |- *; auto with arith.
destruct p; auto with arith.
intros. absurd (Zodd (Zneg (xO p))); red in |- *; auto with arith.
Qed.
Lemma Z_modulo_2 :
forall n:Z, {y : Z | n = (2 * y)%Z} + {y : Z | n = (2 * y + 1)%Z}.
Proof.
intros x.
elim (Zeven_odd_dec x); intro.
left. split with (Zdiv2 x). exact (Zeven_div2 x a).
right. generalize b; clear b; case x.
intro b; inversion b.
intro p; split with (Zdiv2 (Zpos p)). apply (Zodd_div2 (Zpos p)); trivial.
unfold Zge, Zcompare in |- *; simpl in |- *; discriminate.
intro p; split with (Zdiv2 (Zpred (Zneg p))).
pattern (Zneg p) at 1 in |- *; rewrite (Zsucc_pred (Zneg p)).
pattern (Zpred (Zneg p)) at 1 in |- *; rewrite (Zeven_div2 (Zpred (Zneg p))).
reflexivity.
apply Zeven_pred; assumption.
Qed.
Lemma Zsplit2 :
forall n:Z,
{p : Z * Z |
let (x1, x2) := p in n = (x1 + x2)%Z /\ (x1 = x2 \/ x2 = (x1 + 1)%Z)}.
Proof.
intros x.
elim (Z_modulo_2 x); intros [y Hy]; rewrite Zmult_comm in Hy;
rewrite <- Zplus_diag_eq_mult_2 in Hy.
exists (y, y); split.
assumption.
left; reflexivity.
exists (y, (y + 1)%Z); split.
rewrite Zplus_assoc; assumption.
right; reflexivity.
Qed.
|