1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** Binary Integers : Parity and Division by Two *)
(** Initial author : Pierre Crégut (CNET, Lannion, France) *)
(** THIS FILE IS DEPRECATED.
It is now almost entirely made of compatibility formulations
for results already present in BinInt.Z. *)
Require Import BinInt.
Open Scope Z_scope.
(** Historical formulation of even and odd predicates, based on
case analysis. We now rather recommend using [Z.Even] and
[Z.Odd], which are based on the exist predicate. *)
Definition Zeven (z:Z) :=
match z with
| Z0 => True
| Zpos (xO _) => True
| Zneg (xO _) => True
| _ => False
end.
Definition Zodd (z:Z) :=
match z with
| Zpos xH => True
| Zneg xH => True
| Zpos (xI _) => True
| Zneg (xI _) => True
| _ => False
end.
Lemma Zeven_equiv z : Zeven z <-> Z.Even z.
Proof.
rewrite <- Z.even_spec.
destruct z as [|p|p]; try destruct p; simpl; intuition.
Qed.
Lemma Zodd_equiv z : Zodd z <-> Z.Odd z.
Proof.
rewrite <- Z.odd_spec.
destruct z as [|p|p]; try destruct p; simpl; intuition.
Qed.
Theorem Zeven_ex_iff n : Zeven n <-> exists m, n = 2*m.
Proof (Zeven_equiv n).
Theorem Zodd_ex_iff n : Zodd n <-> exists m, n = 2*m + 1.
Proof (Zodd_equiv n).
(** Boolean tests of parity (now in BinInt.Z) *)
Notation Zeven_bool := Z.even (only parsing).
Notation Zodd_bool := Z.odd (only parsing).
Lemma Zeven_bool_iff n : Z.even n = true <-> Zeven n.
Proof.
now rewrite Z.even_spec, Zeven_equiv.
Qed.
Lemma Zodd_bool_iff n : Z.odd n = true <-> Zodd n.
Proof.
now rewrite Z.odd_spec, Zodd_equiv.
Qed.
Ltac boolify_even_odd := rewrite <- ?Zeven_bool_iff, <- ?Zodd_bool_iff.
Lemma Zodd_even_bool n : Z.odd n = negb (Z.even n).
Proof.
symmetry. apply Z.negb_even.
Qed.
Lemma Zeven_odd_bool n : Z.even n = negb (Z.odd n).
Proof.
symmetry. apply Z.negb_odd.
Qed.
Definition Zeven_odd_dec n : {Zeven n} + {Zodd n}.
Proof.
destruct n as [|p|p]; try destruct p; simpl; (now left) || (now right).
Defined.
Definition Zeven_dec n : {Zeven n} + {~ Zeven n}.
Proof.
destruct n as [|p|p]; try destruct p; simpl; (now left) || (now right).
Defined.
Definition Zodd_dec n : {Zodd n} + {~ Zodd n}.
Proof.
destruct n as [|p|p]; try destruct p; simpl; (now left) || (now right).
Defined.
Lemma Zeven_not_Zodd n : Zeven n -> ~ Zodd n.
Proof.
boolify_even_odd. rewrite <- Z.negb_odd. destruct Z.odd; intuition.
Qed.
Lemma Zodd_not_Zeven n : Zodd n -> ~ Zeven n.
Proof.
boolify_even_odd. rewrite <- Z.negb_odd. destruct Z.odd; intuition.
Qed.
Lemma Zeven_Sn n : Zodd n -> Zeven (Z.succ n).
Proof.
boolify_even_odd. now rewrite Z.even_succ.
Qed.
Lemma Zodd_Sn n : Zeven n -> Zodd (Z.succ n).
Proof.
boolify_even_odd. now rewrite Z.odd_succ.
Qed.
Lemma Zeven_pred n : Zodd n -> Zeven (Z.pred n).
Proof.
boolify_even_odd. now rewrite Z.even_pred.
Qed.
Lemma Zodd_pred n : Zeven n -> Zodd (Z.pred n).
Proof.
boolify_even_odd. now rewrite Z.odd_pred.
Qed.
Hint Unfold Zeven Zodd: zarith.
Notation Zeven_bool_succ := Z.even_succ (only parsing).
Notation Zeven_bool_pred := Z.even_pred (only parsing).
Notation Zodd_bool_succ := Z.odd_succ (only parsing).
Notation Zodd_bool_pred := Z.odd_pred (only parsing).
(******************************************************************)
(** * Definition of [Zquot2], [Zdiv2] and properties wrt [Zeven]
and [Zodd] *)
Notation Zdiv2 := Z.div2 (only parsing).
Notation Zquot2 := Z.quot2 (only parsing).
(** Properties of [Z.div2] *)
Lemma Zdiv2_odd_eqn n : n = 2*(Z.div2 n) + if Z.odd n then 1 else 0.
Proof (Z.div2_odd n).
Lemma Zeven_div2 n : Zeven n -> n = 2 * Z.div2 n.
Proof.
boolify_even_odd. rewrite <- Z.negb_odd, Bool.negb_true_iff.
intros Hn. rewrite (Zdiv2_odd_eqn n) at 1. now rewrite Hn, Z.add_0_r.
Qed.
Lemma Zodd_div2 n : Zodd n -> n = 2 * Z.div2 n + 1.
Proof.
boolify_even_odd.
intros Hn. rewrite (Zdiv2_odd_eqn n) at 1. now rewrite Hn.
Qed.
(** Properties of [Z.quot2] *)
(** TODO: move to Numbers someday *)
Lemma Zquot2_odd_eqn n : n = 2*(Z.quot2 n) + if Z.odd n then Z.sgn n else 0.
Proof.
now destruct n as [ |[p|p| ]|[p|p| ]].
Qed.
Lemma Zeven_quot2 n : Zeven n -> n = 2 * Z.quot2 n.
Proof.
intros Hn. apply Zeven_bool_iff in Hn.
rewrite (Zquot2_odd_eqn n) at 1.
now rewrite Zodd_even_bool, Hn, Z.add_0_r.
Qed.
Lemma Zodd_quot2 n : n >= 0 -> Zodd n -> n = 2 * Z.quot2 n + 1.
Proof.
intros Hn Hn'. apply Zodd_bool_iff in Hn'.
rewrite (Zquot2_odd_eqn n) at 1. rewrite Hn'. f_equal.
destruct n; (now destruct Hn) || easy.
Qed.
Lemma Zodd_quot2_neg n : n <= 0 -> Zodd n -> n = 2 * Z.quot2 n - 1.
Proof.
intros Hn Hn'. apply Zodd_bool_iff in Hn'.
rewrite (Zquot2_odd_eqn n) at 1; rewrite Hn'. unfold Z.sub. f_equal.
destruct n; (now destruct Hn) || easy.
Qed.
Lemma Zquot2_opp n : Z.quot2 (-n) = - Z.quot2 n.
Proof.
now destruct n as [ |[p|p| ]|[p|p| ]].
Qed.
Lemma Zquot2_quot n : Z.quot2 n = n ÷ 2.
Proof.
assert (AUX : forall m, 0 < m -> Z.quot2 m = m ÷ 2).
{ intros m Hm.
apply Z.quot_unique with (if Z.odd m then Z.sgn m else 0).
now apply Z.lt_le_incl.
rewrite Z.sgn_pos by trivial.
destruct (Z.odd m); now split.
apply Zquot2_odd_eqn. }
destruct (Z.lt_trichotomy 0 n) as [POS|[NUL|NEG]].
- now apply AUX.
- now subst.
- apply Z.opp_inj. rewrite <- Z.quot_opp_l, <- Zquot2_opp.
apply AUX. now destruct n. easy.
Qed.
(** More properties of parity *)
Lemma Z_modulo_2 n : {y | n = 2 * y} + {y | n = 2 * y + 1}.
Proof.
destruct (Zeven_odd_dec n) as [Hn|Hn].
- left. exists (Z.div2 n). exact (Zeven_div2 n Hn).
- right. exists (Z.div2 n). exact (Zodd_div2 n Hn).
Qed.
Lemma Zsplit2 n :
{p : Z * Z | let (x1, x2) := p in n = x1 + x2 /\ (x1 = x2 \/ x2 = x1 + 1)}.
Proof.
destruct (Z_modulo_2 n) as [(y,Hy)|(y,Hy)];
rewrite Z.mul_comm, <- Zplus_diag_eq_mult_2 in Hy.
- exists (y, y). split. assumption. now left.
- exists (y, y + 1). split. now rewrite Z.add_assoc. now right.
Qed.
Theorem Zeven_ex n : Zeven n -> exists m, n = 2 * m.
Proof.
exists (Z.div2 n); apply Zeven_div2; auto.
Qed.
Theorem Zodd_ex n : Zodd n -> exists m, n = 2 * m + 1.
Proof.
exists (Z.div2 n); apply Zodd_div2; auto.
Qed.
Theorem Zeven_2p p : Zeven (2 * p).
Proof.
now destruct p.
Qed.
Theorem Zodd_2p_plus_1 p : Zodd (2 * p + 1).
Proof.
destruct p as [|p|p]; now try destruct p.
Qed.
Theorem Zeven_plus_Zodd a b : Zeven a -> Zodd b -> Zodd (a + b).
Proof.
boolify_even_odd. rewrite <- Z.negb_odd, Bool.negb_true_iff.
intros Ha Hb. now rewrite Z.odd_add, Ha, Hb.
Qed.
Theorem Zeven_plus_Zeven a b : Zeven a -> Zeven b -> Zeven (a + b).
Proof.
boolify_even_odd. intros Ha Hb. now rewrite Z.even_add, Ha, Hb.
Qed.
Theorem Zodd_plus_Zeven a b : Zodd a -> Zeven b -> Zodd (a + b).
Proof.
intros. rewrite Z.add_comm. now apply Zeven_plus_Zodd.
Qed.
Theorem Zodd_plus_Zodd a b : Zodd a -> Zodd b -> Zeven (a + b).
Proof.
boolify_even_odd. rewrite <- 2 Z.negb_even, 2 Bool.negb_true_iff.
intros Ha Hb. now rewrite Z.even_add, Ha, Hb.
Qed.
Theorem Zeven_mult_Zeven_l a b : Zeven a -> Zeven (a * b).
Proof.
boolify_even_odd. intros Ha. now rewrite Z.even_mul, Ha.
Qed.
Theorem Zeven_mult_Zeven_r a b : Zeven b -> Zeven (a * b).
Proof.
intros. rewrite Z.mul_comm. now apply Zeven_mult_Zeven_l.
Qed.
Theorem Zodd_mult_Zodd a b : Zodd a -> Zodd b -> Zodd (a * b).
Proof.
boolify_even_odd. intros Ha Hb. now rewrite Z.odd_mul, Ha, Hb.
Qed.
(* for compatibility *)
Close Scope Z_scope.
|