1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import BinPos BinNat Nnat ZArith_base ROmega ZArithRing.
Require Export ZOdiv_def.
Require Zdiv.
Open Scope Z_scope.
(** This file provides results about the Round-Toward-Zero Euclidean
division [ZOdiv_eucl], whose projections are [ZOdiv] and [ZOmod].
Definition of this division can be found in file [ZOdiv_def].
This division and the one defined in Zdiv agree only on positive
numbers. Otherwise, Zdiv performs Round-Toward-Bottom.
The current approach is compatible with the division of usual
programming languages such as Ocaml. In addition, it has nicer
properties with respect to opposite and other usual operations.
*)
(** Since ZOdiv and Zdiv are not meant to be used concurrently,
we reuse the same notation. *)
Infix "/" := ZOdiv : Z_scope.
Infix "mod" := ZOmod (at level 40, no associativity) : Z_scope.
Infix "/" := Ndiv : N_scope.
Infix "mod" := Nmod (at level 40, no associativity) : N_scope.
(** Auxiliary results on the ad-hoc comparison [NPgeb]. *)
Lemma NPgeb_Zge : forall (n:N)(p:positive),
NPgeb n p = true -> Z_of_N n >= Zpos p.
Proof.
destruct n as [|n]; simpl; intros.
discriminate.
red; simpl; destruct Pcompare; now auto.
Qed.
Lemma NPgeb_Zlt : forall (n:N)(p:positive),
NPgeb n p = false -> Z_of_N n < Zpos p.
Proof.
destruct n as [|n]; simpl; intros.
red; auto.
red; simpl; destruct Pcompare; now auto.
Qed.
(** * Relation between division on N and on Z. *)
Lemma Ndiv_Z0div : forall a b:N,
Z_of_N (a/b) = (Z_of_N a / Z_of_N b).
Proof.
intros.
destruct a; destruct b; simpl; auto.
unfold Ndiv, ZOdiv; simpl; destruct Pdiv_eucl; auto.
Qed.
Lemma Nmod_Z0mod : forall a b:N,
Z_of_N (a mod b) = (Z_of_N a) mod (Z_of_N b).
Proof.
intros.
destruct a; destruct b; simpl; auto.
unfold Nmod, ZOmod; simpl; destruct Pdiv_eucl; auto.
Qed.
(** * Characterization of this euclidean division. *)
(** First, the usual equation [a=q*b+r]. Notice that [a mod 0]
has been chosen to be [a], so this equation holds even for [b=0].
*)
Theorem N_div_mod_eq : forall a b,
a = (b * (Ndiv a b) + (Nmod a b))%N.
Proof.
intros; generalize (Ndiv_eucl_correct a b).
unfold Ndiv, Nmod; destruct Ndiv_eucl; simpl.
intro H; rewrite H; rewrite Nmult_comm; auto.
Qed.
Theorem ZO_div_mod_eq : forall a b,
a = b * (ZOdiv a b) + (ZOmod a b).
Proof.
intros; generalize (ZOdiv_eucl_correct a b).
unfold ZOdiv, ZOmod; destruct ZOdiv_eucl; simpl.
intro H; rewrite H; rewrite Zmult_comm; auto.
Qed.
(** Then, the inequalities constraining the remainder. *)
Theorem Pdiv_eucl_remainder : forall a b:positive,
Z_of_N (snd (Pdiv_eucl a b)) < Zpos b.
Proof.
induction a; cbv beta iota delta [Pdiv_eucl]; fold Pdiv_eucl; cbv zeta.
intros b; generalize (IHa b); case Pdiv_eucl.
intros q1 r1 Hr1; simpl in Hr1.
case_eq (NPgeb (2*r1+1) b); intros; unfold snd.
romega with *.
apply NPgeb_Zlt; auto.
intros b; generalize (IHa b); case Pdiv_eucl.
intros q1 r1 Hr1; simpl in Hr1.
case_eq (NPgeb (2*r1) b); intros; unfold snd.
romega with *.
apply NPgeb_Zlt; auto.
destruct b; simpl; romega with *.
Qed.
Theorem Nmod_lt : forall (a b:N), b<>0%N ->
(a mod b < b)%N.
Proof.
destruct b as [ |b]; intro H; try solve [elim H;auto].
destruct a as [ |a]; try solve [compute;auto]; unfold Nmod, Ndiv_eucl.
generalize (Pdiv_eucl_remainder a b); destruct Pdiv_eucl; simpl.
romega with *.
Qed.
(** The remainder is bounded by the divisor, in term of absolute values *)
Theorem ZOmod_lt : forall a b:Z, b<>0 ->
Zabs (a mod b) < Zabs b.
Proof.
destruct b as [ |b|b]; intro H; try solve [elim H;auto];
destruct a as [ |a|a]; try solve [compute;auto]; unfold ZOmod, ZOdiv_eucl;
generalize (Pdiv_eucl_remainder a b); destruct Pdiv_eucl; simpl;
try rewrite Zabs_Zopp; rewrite Zabs_eq; auto; apply Z_of_N_le_0.
Qed.
(** The sign of the remainder is the one of [a]. Due to the possible
nullity of [a], a general result is to be stated in the following form:
*)
Theorem ZOmod_sgn : forall a b:Z,
0 <= Zsgn (a mod b) * Zsgn a.
Proof.
destruct b as [ |b|b]; destruct a as [ |a|a]; simpl; auto with zarith;
unfold ZOmod, ZOdiv_eucl; destruct Pdiv_eucl;
simpl; destruct n0; simpl; auto with zarith.
Qed.
(** This can also be said in a simplier way: *)
Theorem Zsgn_pos_iff : forall z, 0 <= Zsgn z <-> 0 <= z.
Proof.
destruct z; simpl; intuition auto with zarith.
Qed.
Theorem ZOmod_sgn2 : forall a b:Z,
0 <= (a mod b) * a.
Proof.
intros; rewrite <-Zsgn_pos_iff, Zsgn_Zmult; apply ZOmod_sgn.
Qed.
(** Reformulation of [ZOdiv_lt] and [ZOmod_sgn] in 2
then 4 particular cases. *)
Theorem ZOmod_lt_pos : forall a b:Z, 0<=a -> b<>0 ->
0 <= a mod b < Zabs b.
Proof.
intros.
assert (0 <= a mod b).
generalize (ZOmod_sgn a b).
destruct (Zle_lt_or_eq 0 a H).
rewrite <- Zsgn_pos in H1; rewrite H1; romega with *.
subst a; simpl; auto.
generalize (ZOmod_lt a b H0); romega with *.
Qed.
Theorem ZOmod_lt_neg : forall a b:Z, a<=0 -> b<>0 ->
-Zabs b < a mod b <= 0.
Proof.
intros.
assert (a mod b <= 0).
generalize (ZOmod_sgn a b).
destruct (Zle_lt_or_eq a 0 H).
rewrite <- Zsgn_neg in H1; rewrite H1; romega with *.
subst a; simpl; auto.
generalize (ZOmod_lt a b H0); romega with *.
Qed.
Theorem ZOmod_lt_pos_pos : forall a b:Z, 0<=a -> 0<b -> 0 <= a mod b < b.
Proof.
intros; generalize (ZOmod_lt_pos a b); romega with *.
Qed.
Theorem ZOmod_lt_pos_neg : forall a b:Z, 0<=a -> b<0 -> 0 <= a mod b < -b.
Proof.
intros; generalize (ZOmod_lt_pos a b); romega with *.
Qed.
Theorem ZOmod_lt_neg_pos : forall a b:Z, a<=0 -> 0<b -> -b < a mod b <= 0.
Proof.
intros; generalize (ZOmod_lt_neg a b); romega with *.
Qed.
Theorem ZOmod_lt_neg_neg : forall a b:Z, a<=0 -> b<0 -> b < a mod b <= 0.
Proof.
intros; generalize (ZOmod_lt_neg a b); romega with *.
Qed.
(** * Division and Opposite *)
(* The precise equalities that are invalid with "historic" Zdiv. *)
Theorem ZOdiv_opp_l : forall a b:Z, (-a)/b = -(a/b).
Proof.
destruct a; destruct b; simpl; auto;
unfold ZOdiv, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith.
Qed.
Theorem ZOdiv_opp_r : forall a b:Z, a/(-b) = -(a/b).
Proof.
destruct a; destruct b; simpl; auto;
unfold ZOdiv, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith.
Qed.
Theorem ZOmod_opp_l : forall a b:Z, (-a) mod b = -(a mod b).
Proof.
destruct a; destruct b; simpl; auto;
unfold ZOmod, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith.
Qed.
Theorem ZOmod_opp_r : forall a b:Z, a mod (-b) = a mod b.
Proof.
destruct a; destruct b; simpl; auto;
unfold ZOmod, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith.
Qed.
Theorem ZOdiv_opp_opp : forall a b:Z, (-a)/(-b) = a/b.
Proof.
destruct a; destruct b; simpl; auto;
unfold ZOdiv, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith.
Qed.
Theorem ZOmod_opp_opp : forall a b:Z, (-a) mod (-b) = -(a mod b).
Proof.
destruct a; destruct b; simpl; auto;
unfold ZOmod, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith.
Qed.
(** * Unicity results *)
Definition Remainder a b r :=
(0 <= a /\ 0 <= r < Zabs b) \/ (a <= 0 /\ -Zabs b < r <= 0).
Definition Remainder_alt a b r :=
Zabs r < Zabs b /\ 0 <= r * a.
Lemma Remainder_equiv : forall a b r,
Remainder a b r <-> Remainder_alt a b r.
Proof.
unfold Remainder, Remainder_alt; intuition.
romega with *.
romega with *.
rewrite <-(Zmult_opp_opp).
apply Zmult_le_0_compat; romega.
assert (0 <= Zsgn r * Zsgn a) by (rewrite <-Zsgn_Zmult, Zsgn_pos_iff; auto).
destruct r; simpl Zsgn in *; romega with *.
Qed.
Theorem ZOdiv_mod_unique_full:
forall a b q r, Remainder a b r ->
a = b*q + r -> q = a/b /\ r = a mod b.
Proof.
destruct 1 as [(H,H0)|(H,H0)]; intros.
apply Zdiv.Zdiv_mod_unique with b; auto.
apply ZOmod_lt_pos; auto.
romega with *.
rewrite <- H1; apply ZO_div_mod_eq.
rewrite <- (Zopp_involutive a).
rewrite ZOdiv_opp_l, ZOmod_opp_l.
generalize (Zdiv.Zdiv_mod_unique b (-q) (-a/b) (-r) (-a mod b)).
generalize (ZOmod_lt_pos (-a) b).
rewrite <-ZO_div_mod_eq, <-Zopp_mult_distr_r, <-Zopp_plus_distr, <-H1.
romega with *.
Qed.
Theorem ZOdiv_unique_full:
forall a b q r, Remainder a b r ->
a = b*q + r -> q = a/b.
Proof.
intros; destruct (ZOdiv_mod_unique_full a b q r); auto.
Qed.
Theorem ZOdiv_unique:
forall a b q r, 0 <= a -> 0 <= r < b ->
a = b*q + r -> q = a/b.
Proof.
intros; eapply ZOdiv_unique_full; eauto.
red; romega with *.
Qed.
Theorem ZOmod_unique_full:
forall a b q r, Remainder a b r ->
a = b*q + r -> r = a mod b.
Proof.
intros; destruct (ZOdiv_mod_unique_full a b q r); auto.
Qed.
Theorem ZOmod_unique:
forall a b q r, 0 <= a -> 0 <= r < b ->
a = b*q + r -> r = a mod b.
Proof.
intros; eapply ZOmod_unique_full; eauto.
red; romega with *.
Qed.
(** * Basic values of divisions and modulo. *)
Lemma ZOmod_0_l: forall a, 0 mod a = 0.
Proof.
destruct a; simpl; auto.
Qed.
Lemma ZOmod_0_r: forall a, a mod 0 = a.
Proof.
destruct a; simpl; auto.
Qed.
Lemma ZOdiv_0_l: forall a, 0/a = 0.
Proof.
destruct a; simpl; auto.
Qed.
Lemma ZOdiv_0_r: forall a, a/0 = 0.
Proof.
destruct a; simpl; auto.
Qed.
Lemma ZOmod_1_r: forall a, a mod 1 = 0.
Proof.
intros; symmetry; apply ZOmod_unique_full with a; auto with zarith.
rewrite Remainder_equiv; red; simpl; auto with zarith.
Qed.
Lemma ZOdiv_1_r: forall a, a/1 = a.
Proof.
intros; symmetry; apply ZOdiv_unique_full with 0; auto with zarith.
rewrite Remainder_equiv; red; simpl; auto with zarith.
Qed.
Hint Resolve ZOmod_0_l ZOmod_0_r ZOdiv_0_l ZOdiv_0_r ZOdiv_1_r ZOmod_1_r
: zarith.
Lemma ZOdiv_1_l: forall a, 1 < a -> 1/a = 0.
Proof.
intros; symmetry; apply ZOdiv_unique with 1; auto with zarith.
Qed.
Lemma ZOmod_1_l: forall a, 1 < a -> 1 mod a = 1.
Proof.
intros; symmetry; apply ZOmod_unique with 0; auto with zarith.
Qed.
Lemma ZO_div_same : forall a:Z, a<>0 -> a/a = 1.
Proof.
intros; symmetry; apply ZOdiv_unique_full with 0; auto with *.
rewrite Remainder_equiv; red; simpl; romega with *.
Qed.
Lemma ZO_mod_same : forall a, a mod a = 0.
Proof.
destruct a; intros; symmetry.
compute; auto.
apply ZOmod_unique with 1; auto with *; romega with *.
apply ZOmod_unique_full with 1; auto with *; red; romega with *.
Qed.
Lemma ZO_mod_mult : forall a b, (a*b) mod b = 0.
Proof.
intros a b; destruct (Z_eq_dec b 0) as [Hb|Hb].
subst; simpl; rewrite ZOmod_0_r; auto with zarith.
symmetry; apply ZOmod_unique_full with a; [ red; romega with * | ring ].
Qed.
Lemma ZO_div_mult : forall a b:Z, b <> 0 -> (a*b)/b = a.
Proof.
intros; symmetry; apply ZOdiv_unique_full with 0; auto with zarith;
[ red; romega with * | ring].
Qed.
(** * Order results about ZOmod and ZOdiv *)
(* Division of positive numbers is positive. *)
Lemma ZO_div_pos: forall a b, 0 <= a -> 0 <= b -> 0 <= a/b.
Proof.
intros.
destruct (Zle_lt_or_eq 0 b H0).
assert (H2:=ZOmod_lt_pos_pos a b H H1).
rewrite (ZO_div_mod_eq a b) in H.
destruct (Z_lt_le_dec (a/b) 0); auto.
assert (b*(a/b) <= -b).
replace (-b) with (b*-1); [ | ring].
apply Zmult_le_compat_l; auto with zarith.
romega.
subst b; rewrite ZOdiv_0_r; auto.
Qed.
(** As soon as the divisor is greater or equal than 2,
the division is strictly decreasing. *)
Lemma ZO_div_lt : forall a b:Z, 0 < a -> 2 <= b -> a/b < a.
Proof.
intros.
assert (Hb : 0 < b) by romega.
assert (H1 : 0 <= a/b) by (apply ZO_div_pos; auto with zarith).
assert (H2 : 0 <= a mod b < b) by (apply ZOmod_lt_pos_pos; auto with zarith).
destruct (Zle_lt_or_eq 0 (a/b) H1) as [H3|H3]; [ | rewrite <- H3; auto].
pattern a at 2; rewrite (ZO_div_mod_eq a b).
apply Zlt_le_trans with (2*(a/b)).
romega.
apply Zle_trans with (b*(a/b)).
apply Zmult_le_compat_r; auto.
romega.
Qed.
(** A division of a small number by a bigger one yields zero. *)
Theorem ZOdiv_small: forall a b, 0 <= a < b -> a/b = 0.
Proof.
intros a b H; apply sym_equal; apply ZOdiv_unique with a; auto with zarith.
Qed.
(** Same situation, in term of modulo: *)
Theorem ZOmod_small: forall a n, 0 <= a < n -> a mod n = a.
Proof.
intros a b H; apply sym_equal; apply ZOmod_unique with 0; auto with zarith.
Qed.
(** [Zge] is compatible with a positive division. *)
Lemma ZO_div_monotone_pos : forall a b c:Z, 0<=c -> 0<=a<=b -> a/c <= b/c.
Proof.
intros.
destruct H0.
destruct (Zle_lt_or_eq 0 c H);
[ clear H | subst c; do 2 rewrite ZOdiv_0_r; auto].
generalize (ZO_div_mod_eq a c).
generalize (ZOmod_lt_pos_pos a c H0 H2).
generalize (ZO_div_mod_eq b c).
generalize (ZOmod_lt_pos_pos b c (Zle_trans _ _ _ H0 H1) H2).
intros.
elim (Z_le_gt_dec (a / c) (b / c)); auto with zarith.
intro.
absurd (a - b >= 1).
omega.
replace (a-b) with (c * (a/c-b/c) + a mod c - b mod c) by
(symmetry; pattern a at 1; rewrite H5; pattern b at 1; rewrite H3; ring).
assert (c * (a / c - b / c) >= c * 1).
apply Zmult_ge_compat_l.
omega.
omega.
assert (c * 1 = c).
ring.
omega.
Qed.
Lemma ZO_div_monotone : forall a b c, 0<=c -> a<=b -> a/c <= b/c.
Proof.
intros.
destruct (Z_le_gt_dec 0 a).
apply ZO_div_monotone_pos; auto with zarith.
destruct (Z_le_gt_dec 0 b).
apply Zle_trans with 0.
apply Zle_left_rev.
simpl.
rewrite <- ZOdiv_opp_l.
apply ZO_div_pos; auto with zarith.
apply ZO_div_pos; auto with zarith.
rewrite <-(Zopp_involutive a), (ZOdiv_opp_l (-a)).
rewrite <-(Zopp_involutive b), (ZOdiv_opp_l (-b)).
generalize (ZO_div_monotone_pos (-b) (-a) c H).
romega.
Qed.
(** With our choice of division, rounding of (a/b) is always done toward zero: *)
Lemma ZO_mult_div_le : forall a b:Z, 0 <= a -> 0 <= b*(a/b) <= a.
Proof.
intros a b Ha.
destruct b as [ |b|b].
simpl; auto with zarith.
split.
apply Zmult_le_0_compat; auto with zarith.
apply ZO_div_pos; auto with zarith.
generalize (ZO_div_mod_eq a (Zpos b)) (ZOmod_lt_pos_pos a (Zpos b) Ha); romega with *.
change (Zneg b) with (-Zpos b); rewrite ZOdiv_opp_r, Zmult_opp_opp.
split.
apply Zmult_le_0_compat; auto with zarith.
apply ZO_div_pos; auto with zarith.
generalize (ZO_div_mod_eq a (Zpos b)) (ZOmod_lt_pos_pos a (Zpos b) Ha); romega with *.
Qed.
Lemma ZO_mult_div_ge : forall a b:Z, a <= 0 -> a <= b*(a/b) <= 0.
Proof.
intros a b Ha.
destruct b as [ |b|b].
simpl; auto with zarith.
split.
generalize (ZO_div_mod_eq a (Zpos b)) (ZOmod_lt_neg_pos a (Zpos b) Ha); romega with *.
apply Zle_left_rev; unfold Zplus.
rewrite Zopp_mult_distr_r, <-ZOdiv_opp_l.
apply Zmult_le_0_compat; auto with zarith.
apply ZO_div_pos; auto with zarith.
change (Zneg b) with (-Zpos b); rewrite ZOdiv_opp_r, Zmult_opp_opp.
split.
generalize (ZO_div_mod_eq a (Zpos b)) (ZOmod_lt_neg_pos a (Zpos b) Ha); romega with *.
apply Zle_left_rev; unfold Zplus.
rewrite Zopp_mult_distr_r, <-ZOdiv_opp_l.
apply Zmult_le_0_compat; auto with zarith.
apply ZO_div_pos; auto with zarith.
Qed.
(** The previous inequalities between [b*(a/b)] and [a] are exact
iff the modulo is zero. *)
Lemma ZO_div_exact_full_1 : forall a b:Z, a = b*(a/b) -> a mod b = 0.
Proof.
intros; generalize (ZO_div_mod_eq a b); romega.
Qed.
Lemma ZO_div_exact_full_2 : forall a b:Z, a mod b = 0 -> a = b*(a/b).
Proof.
intros; generalize (ZO_div_mod_eq a b); romega.
Qed.
(** A modulo cannot grow beyond its starting point. *)
Theorem ZOmod_le: forall a b, 0 <= a -> 0 <= b -> a mod b <= a.
Proof.
intros a b H1 H2.
destruct (Zle_lt_or_eq _ _ H2).
case (Zle_or_lt b a); intros H3.
case (ZOmod_lt_pos_pos a b); auto with zarith.
rewrite ZOmod_small; auto with zarith.
subst; rewrite ZOmod_0_r; auto with zarith.
Qed.
(** Some additionnal inequalities about Zdiv. *)
Theorem ZOdiv_le_upper_bound:
forall a b q, 0 < b -> a <= q*b -> a/b <= q.
Proof.
intros.
rewrite <- (ZO_div_mult q b); auto with zarith.
apply ZO_div_monotone; auto with zarith.
Qed.
Theorem ZOdiv_lt_upper_bound:
forall a b q, 0 <= a -> 0 < b -> a < q*b -> a/b < q.
Proof.
intros a b q H1 H2 H3.
apply Zmult_lt_reg_r with b; auto with zarith.
apply Zle_lt_trans with (2 := H3).
pattern a at 2; rewrite (ZO_div_mod_eq a b); auto with zarith.
rewrite (Zmult_comm b); case (ZOmod_lt_pos_pos a b); auto with zarith.
Qed.
Theorem ZOdiv_le_lower_bound:
forall a b q, 0 < b -> q*b <= a -> q <= a/b.
Proof.
intros.
rewrite <- (ZO_div_mult q b); auto with zarith.
apply ZO_div_monotone; auto with zarith.
Qed.
Theorem ZOdiv_sgn: forall a b,
0 <= Zsgn (a/b) * Zsgn a * Zsgn b.
Proof.
destruct a as [ |a|a]; destruct b as [ |b|b]; simpl; auto with zarith;
unfold ZOdiv; simpl; destruct Pdiv_eucl; simpl; destruct n; simpl; auto with zarith.
Qed.
(** * Relations between usual operations and Zmod and Zdiv *)
(** First, a result that used to be always valid with Zdiv,
but must be restricted here.
For instance, now (9+(-5)*2) mod 2 = -1 <> 1 = 9 mod 2 *)
Lemma ZO_mod_plus : forall a b c:Z,
0 <= (a+b*c) * a ->
(a + b * c) mod c = a mod c.
Proof.
intros; destruct (Z_eq_dec a 0) as [Ha|Ha].
subst; simpl; rewrite ZOmod_0_l; apply ZO_mod_mult.
intros; destruct (Z_eq_dec c 0) as [Hc|Hc].
subst; do 2 rewrite ZOmod_0_r; romega.
symmetry; apply ZOmod_unique_full with (a/c+b); auto with zarith.
rewrite Remainder_equiv; split.
apply ZOmod_lt; auto.
apply Zmult_le_0_reg_r with (a*a); eauto.
destruct a; simpl; auto with zarith.
replace ((a mod c)*(a+b*c)*(a*a)) with (((a mod c)*a)*((a+b*c)*a)) by ring.
apply Zmult_le_0_compat; auto.
apply ZOmod_sgn2.
rewrite Zmult_plus_distr_r, Zmult_comm.
generalize (ZO_div_mod_eq a c); romega.
Qed.
Lemma ZO_div_plus : forall a b c:Z,
0 <= (a+b*c) * a -> c<>0 ->
(a + b * c) / c = a / c + b.
Proof.
intros; destruct (Z_eq_dec a 0) as [Ha|Ha].
subst; simpl; apply ZO_div_mult; auto.
symmetry.
apply ZOdiv_unique_full with (a mod c); auto with zarith.
rewrite Remainder_equiv; split.
apply ZOmod_lt; auto.
apply Zmult_le_0_reg_r with (a*a); eauto.
destruct a; simpl; auto with zarith.
replace ((a mod c)*(a+b*c)*(a*a)) with (((a mod c)*a)*((a+b*c)*a)) by ring.
apply Zmult_le_0_compat; auto.
apply ZOmod_sgn2.
rewrite Zmult_plus_distr_r, Zmult_comm.
generalize (ZO_div_mod_eq a c); romega.
Qed.
Theorem ZO_div_plus_l: forall a b c : Z,
0 <= (a*b+c)*c -> b<>0 ->
b<>0 -> (a * b + c) / b = a + c / b.
Proof.
intros a b c; rewrite Zplus_comm; intros; rewrite ZO_div_plus;
try apply Zplus_comm; auto with zarith.
Qed.
(** Cancellations. *)
Lemma ZOdiv_mult_cancel_r : forall a b c:Z,
c<>0 -> (a*c)/(b*c) = a/b.
Proof.
intros a b c Hc.
destruct (Z_eq_dec b 0).
subst; simpl; do 2 rewrite ZOdiv_0_r; auto.
symmetry.
apply ZOdiv_unique_full with ((a mod b)*c); auto with zarith.
rewrite Remainder_equiv.
split.
do 2 rewrite Zabs_Zmult.
apply Zmult_lt_compat_r.
romega with *.
apply ZOmod_lt; auto.
replace ((a mod b)*c*(a*c)) with (((a mod b)*a)*(c*c)) by ring.
apply Zmult_le_0_compat.
apply ZOmod_sgn2.
destruct c; simpl; auto with zarith.
pattern a at 1; rewrite (ZO_div_mod_eq a b); ring.
Qed.
Lemma ZOdiv_mult_cancel_l : forall a b c:Z,
c<>0 -> (c*a)/(c*b) = a/b.
Proof.
intros.
rewrite (Zmult_comm c a); rewrite (Zmult_comm c b).
apply ZOdiv_mult_cancel_r; auto.
Qed.
Lemma ZOmult_mod_distr_l: forall a b c,
(c*a) mod (c*b) = c * (a mod b).
Proof.
intros; destruct (Z_eq_dec c 0) as [Hc|Hc].
subst; simpl; rewrite ZOmod_0_r; auto.
destruct (Z_eq_dec b 0) as [Hb|Hb].
subst; repeat rewrite Zmult_0_r || rewrite ZOmod_0_r; auto.
assert (c*b <> 0).
contradict Hc; eapply Zmult_integral_l; eauto.
rewrite (Zplus_minus_eq _ _ _ (ZO_div_mod_eq (c*a) (c*b))).
rewrite (Zplus_minus_eq _ _ _ (ZO_div_mod_eq a b)).
rewrite ZOdiv_mult_cancel_l; auto with zarith.
ring.
Qed.
Lemma ZOmult_mod_distr_r: forall a b c,
(a*c) mod (b*c) = (a mod b) * c.
Proof.
intros; repeat rewrite (fun x => (Zmult_comm x c)).
apply ZOmult_mod_distr_l; auto.
Qed.
(** Operations modulo. *)
Theorem ZOmod_mod: forall a n, (a mod n) mod n = a mod n.
Proof.
intros.
generalize (ZOmod_sgn2 a n).
pattern a at 2 4; rewrite (ZO_div_mod_eq a n); auto with zarith.
rewrite Zplus_comm; rewrite (Zmult_comm n).
intros.
apply sym_equal; apply ZO_mod_plus; auto with zarith.
rewrite Zmult_comm; auto.
Qed.
Theorem ZOmult_mod: forall a b n,
(a * b) mod n = ((a mod n) * (b mod n)) mod n.
Proof.
intros.
generalize (Zmult_le_0_compat _ _ (ZOmod_sgn2 a n) (ZOmod_sgn2 b n)).
pattern a at 2 3; rewrite (ZO_div_mod_eq a n); auto with zarith.
pattern b at 2 3; rewrite (ZO_div_mod_eq b n); auto with zarith.
set (A:=a mod n); set (B:=b mod n); set (A':=a/n); set (B':=b/n).
replace (A*(n*A'+A)*(B*(n*B'+B))) with (((n*A' + A) * (n*B' + B))*(A*B))
by ring.
replace ((n*A' + A) * (n*B' + B))
with (A*B + (A'*B+B'*A+n*A'*B')*n) by ring.
intros.
apply ZO_mod_plus; auto with zarith.
Qed.
(** addition and modulo
Generally speaking, unlike with Zdiv, we don't have
(a+b) mod n = (a mod n + b mod n) mod n
for any a and b.
For instance, take (8 + (-10)) mod 3 = -2 whereas
(8 mod 3 + (-10 mod 3)) mod 3 = 1. *)
Theorem ZOplus_mod: forall a b n,
0 <= a * b ->
(a + b) mod n = (a mod n + b mod n) mod n.
Proof.
assert (forall a b n, 0<a -> 0<b ->
(a + b) mod n = (a mod n + b mod n) mod n).
intros a b n Ha Hb.
assert (H : 0<=a+b) by (romega with * ); revert H.
pattern a at 1 2; rewrite (ZO_div_mod_eq a n); auto with zarith.
pattern b at 1 2; rewrite (ZO_div_mod_eq b n); auto with zarith.
replace ((n * (a / n) + a mod n) + (n * (b / n) + b mod n))
with ((a mod n + b mod n) + (a / n + b / n) * n) by ring.
intros.
apply ZO_mod_plus; auto with zarith.
apply Zmult_le_0_compat; auto with zarith.
apply Zplus_le_0_compat.
apply Zmult_le_reg_r with a; auto with zarith.
simpl; apply ZOmod_sgn2; auto.
apply Zmult_le_reg_r with b; auto with zarith.
simpl; apply ZOmod_sgn2; auto.
(* general situation *)
intros a b n Hab.
destruct (Z_eq_dec a 0).
subst; simpl; symmetry; apply ZOmod_mod.
destruct (Z_eq_dec b 0).
subst; simpl; do 2 rewrite Zplus_0_r; symmetry; apply ZOmod_mod.
assert (0<a /\ 0<b \/ a<0 /\ b<0).
destruct a; destruct b; simpl in *; intuition; romega with *.
destruct H0.
apply H; intuition.
rewrite <-(Zopp_involutive a), <-(Zopp_involutive b).
rewrite <- Zopp_plus_distr; rewrite ZOmod_opp_l.
rewrite (ZOmod_opp_l (-a)),(ZOmod_opp_l (-b)).
match goal with |- _ = (-?x+-?y) mod n =>
rewrite <-(Zopp_plus_distr x y), ZOmod_opp_l end.
f_equal; apply H; auto with zarith.
Qed.
Lemma ZOplus_mod_idemp_l: forall a b n,
0 <= a * b ->
(a mod n + b) mod n = (a + b) mod n.
Proof.
intros.
rewrite ZOplus_mod.
rewrite ZOmod_mod.
symmetry.
apply ZOplus_mod; auto.
destruct (Z_eq_dec a 0).
subst; rewrite ZOmod_0_l; auto.
destruct (Z_eq_dec b 0).
subst; rewrite Zmult_0_r; auto with zarith.
apply Zmult_le_reg_r with (a*b).
assert (a*b <> 0).
intro Hab.
rewrite (Zmult_integral_l _ _ n1 Hab) in n0; auto with zarith.
auto with zarith.
simpl.
replace (a mod n * b * (a*b)) with ((a mod n * a)*(b*b)) by ring.
apply Zmult_le_0_compat.
apply ZOmod_sgn2.
destruct b; simpl; auto with zarith.
Qed.
Lemma ZOplus_mod_idemp_r: forall a b n,
0 <= a*b ->
(b + a mod n) mod n = (b + a) mod n.
Proof.
intros.
rewrite Zplus_comm, (Zplus_comm b a).
apply ZOplus_mod_idemp_l; auto.
Qed.
Lemma ZOmult_mod_idemp_l: forall a b n, (a mod n * b) mod n = (a * b) mod n.
Proof.
intros; rewrite ZOmult_mod, ZOmod_mod, <- ZOmult_mod; auto.
Qed.
Lemma ZOmult_mod_idemp_r: forall a b n, (b * (a mod n)) mod n = (b * a) mod n.
Proof.
intros; rewrite ZOmult_mod, ZOmod_mod, <- ZOmult_mod; auto.
Qed.
(** Unlike with Zdiv, the following result is true without restrictions. *)
Lemma ZOdiv_ZOdiv : forall a b c, (a/b)/c = a/(b*c).
Proof.
(* particular case: a, b, c positive *)
assert (forall a b c, a>0 -> b>0 -> c>0 -> (a/b)/c = a/(b*c)).
intros a b c H H0 H1.
pattern a at 2;rewrite (ZO_div_mod_eq a b).
pattern (a/b) at 2;rewrite (ZO_div_mod_eq (a/b) c).
replace (b * (c * (a / b / c) + (a / b) mod c) + a mod b) with
((a / b / c)*(b * c) + (b * ((a / b) mod c) + a mod b)) by ring.
assert (b*c<>0).
intro H2;
assert (H3: c <> 0) by auto with zarith;
rewrite (Zmult_integral_l _ _ H3 H2) in H0; auto with zarith.
assert (0<=a/b) by (apply (ZO_div_pos a b); auto with zarith).
assert (0<=a mod b < b) by (apply ZOmod_lt_pos_pos; auto with zarith).
assert (0<=(a/b) mod c < c) by
(apply ZOmod_lt_pos_pos; auto with zarith).
rewrite ZO_div_plus_l; auto with zarith.
rewrite (ZOdiv_small (b * ((a / b) mod c) + a mod b)).
ring.
split.
apply Zplus_le_0_compat;auto with zarith.
apply Zle_lt_trans with (b * ((a / b) mod c) + (b-1)).
apply Zplus_le_compat;auto with zarith.
apply Zle_lt_trans with (b * (c-1) + (b - 1)).
apply Zplus_le_compat;auto with zarith.
replace (b * (c - 1) + (b - 1)) with (b*c-1);try ring;auto with zarith.
repeat (apply Zmult_le_0_compat || apply Zplus_le_0_compat); auto with zarith.
apply (ZO_div_pos (a/b) c); auto with zarith.
(* b c positive, a general *)
assert (forall a b c, b>0 -> c>0 -> (a/b)/c = a/(b*c)).
intros; destruct a as [ |a|a]; try reflexivity.
apply H; auto with zarith.
change (Zneg a) with (-Zpos a); repeat rewrite ZOdiv_opp_l.
f_equal; apply H; auto with zarith.
(* c positive, a b general *)
assert (forall a b c, c>0 -> (a/b)/c = a/(b*c)).
intros; destruct b as [ |b|b].
repeat rewrite ZOdiv_0_r; reflexivity.
apply H0; auto with zarith.
change (Zneg b) with (-Zpos b);
repeat (rewrite ZOdiv_opp_r || rewrite ZOdiv_opp_l || rewrite <- Zopp_mult_distr_l).
f_equal; apply H0; auto with zarith.
(* a b c general *)
intros; destruct c as [ |c|c].
rewrite Zmult_0_r; repeat rewrite ZOdiv_0_r; reflexivity.
apply H1; auto with zarith.
change (Zneg c) with (-Zpos c);
rewrite <- Zopp_mult_distr_r; do 2 rewrite ZOdiv_opp_r.
f_equal; apply H1; auto with zarith.
Qed.
(** A last inequality: *)
Theorem ZOdiv_mult_le:
forall a b c, 0<=a -> 0<=b -> 0<=c -> c*(a/b) <= (c*a)/b.
Proof.
intros a b c Ha Hb Hc.
destruct (Zle_lt_or_eq _ _ Ha);
[ | subst; rewrite ZOdiv_0_l, Zmult_0_r, ZOdiv_0_l; auto].
destruct (Zle_lt_or_eq _ _ Hb);
[ | subst; rewrite ZOdiv_0_r, ZOdiv_0_r, Zmult_0_r; auto].
destruct (Zle_lt_or_eq _ _ Hc);
[ | subst; rewrite ZOdiv_0_l; auto].
case (ZOmod_lt_pos_pos a b); auto with zarith; intros Hu1 Hu2.
case (ZOmod_lt_pos_pos c b); auto with zarith; intros Hv1 Hv2.
apply Zmult_le_reg_r with b; auto with zarith.
rewrite <- Zmult_assoc.
replace (a / b * b) with (a - a mod b).
replace (c * a / b * b) with (c * a - (c * a) mod b).
rewrite Zmult_minus_distr_l.
unfold Zminus; apply Zplus_le_compat_l.
match goal with |- - ?X <= -?Y => assert (Y <= X); auto with zarith end.
apply Zle_trans with ((c mod b) * (a mod b)); auto with zarith.
rewrite ZOmult_mod; auto with zarith.
apply (ZOmod_le ((c mod b) * (a mod b)) b); auto with zarith.
apply Zmult_le_compat_r; auto with zarith.
apply (ZOmod_le c b); auto.
pattern (c * a) at 1; rewrite (ZO_div_mod_eq (c * a) b); try ring;
auto with zarith.
pattern a at 1; rewrite (ZO_div_mod_eq a b); try ring; auto with zarith.
Qed.
(** ZOmod is related to divisibility (see more in Znumtheory) *)
Lemma ZOmod_divides : forall a b,
a mod b = 0 <-> exists c, a = b*c.
Proof.
split; intros.
exists (a/b).
pattern a at 1; rewrite (ZO_div_mod_eq a b).
rewrite H; auto with zarith.
destruct H as [c Hc].
destruct (Z_eq_dec b 0).
subst b; simpl in *; subst a; auto.
symmetry.
apply ZOmod_unique_full with c; auto with zarith.
red; romega with *.
Qed.
(** * Interaction with "historic" Zdiv *)
(** They agree at least on positive numbers: *)
Theorem ZOdiv_eucl_Zdiv_eucl_pos : forall a b:Z, 0 <= a -> 0 < b ->
a/b = Zdiv.Zdiv a b /\ a mod b = Zdiv.Zmod a b.
Proof.
intros.
apply Zdiv.Zdiv_mod_unique with b.
apply ZOmod_lt_pos; auto with zarith.
rewrite Zabs_eq; auto with *; apply Zdiv.Z_mod_lt; auto with *.
rewrite <- Zdiv.Z_div_mod_eq; auto with *.
symmetry; apply ZO_div_mod_eq; auto with *.
Qed.
Theorem ZOdiv_Zdiv_pos : forall a b, 0 <= a -> 0 <= b ->
a/b = Zdiv.Zdiv a b.
Proof.
intros a b Ha Hb.
destruct (Zle_lt_or_eq _ _ Hb).
generalize (ZOdiv_eucl_Zdiv_eucl_pos a b Ha H); intuition.
subst; rewrite ZOdiv_0_r, Zdiv.Zdiv_0_r; reflexivity.
Qed.
Theorem ZOmod_Zmod_pos : forall a b, 0 <= a -> 0 < b ->
a mod b = Zdiv.Zmod a b.
Proof.
intros a b Ha Hb; generalize (ZOdiv_eucl_Zdiv_eucl_pos a b Ha Hb);
intuition.
Qed.
(** Modulos are null at the same places *)
Theorem ZOmod_Zmod_zero : forall a b, b<>0 ->
(a mod b = 0 <-> Zdiv.Zmod a b = 0).
Proof.
intros.
rewrite ZOmod_divides, Zdiv.Zmod_divides; intuition.
Qed.
|