1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
Require Import BinInt.
Require Import Zcompare.
Require Import Zorder.
Require Import Znat.
Require Import Zmisc.
Require Import Wf_nat.
Open Local Scope Z_scope.
(** Our purpose is to write an induction shema for {0,1,2,...}
similar to the [nat] schema (Theorem [Natlike_rec]). For that the
following implications will be used :
<<
(n:nat)(Q n)==(n:nat)(P (inject_nat n)) ===> (x:Z)`x > 0) -> (P x)
/\
||
||
(Q O) (n:nat)(Q n)->(Q (S n)) <=== (P 0) (x:Z) (P x) -> (P (Zs x))
<=== (inject_nat (S n))=(Zs (inject_nat n))
<=== inject_nat_complete
>>
Then the diagram will be closed and the theorem proved. *)
Lemma Z_of_nat_complete :
forall x:Z, 0 <= x -> exists n : nat, x = Z_of_nat n.
Proof.
intro x; destruct x; intros;
[ exists 0%nat; auto with arith
| specialize (ZL4 p); intros Hp; elim Hp; intros; exists (S x); intros;
simpl in |- *; specialize (nat_of_P_o_P_of_succ_nat_eq_succ x);
intro Hx0; rewrite <- H0 in Hx0; apply f_equal with (f := Zpos);
apply nat_of_P_inj; auto with arith
| absurd (0 <= Zneg p);
[ unfold Zle in |- *; simpl in |- *; do 2 unfold not in |- *;
auto with arith
| assumption ] ].
Qed.
Lemma ZL4_inf : forall y:positive, {h : nat | nat_of_P y = S h}.
Proof.
intro y; induction y as [p H| p H1| ];
[ elim H; intros x H1; exists (S x + S x)%nat; unfold nat_of_P in |- *;
simpl in |- *; rewrite ZL0; rewrite Pmult_nat_r_plus_morphism;
unfold nat_of_P in H1; rewrite H1; auto with arith
| elim H1; intros x H2; exists (x + S x)%nat; unfold nat_of_P in |- *;
simpl in |- *; rewrite ZL0; rewrite Pmult_nat_r_plus_morphism;
unfold nat_of_P in H2; rewrite H2; auto with arith
| exists 0%nat; auto with arith ].
Qed.
Lemma Z_of_nat_complete_inf :
forall x:Z, 0 <= x -> {n : nat | x = Z_of_nat n}.
Proof.
intro x; destruct x; intros;
[ exists 0%nat; auto with arith
| specialize (ZL4_inf p); intros Hp; elim Hp; intros x0 H0; exists (S x0);
intros; simpl in |- *; specialize (nat_of_P_o_P_of_succ_nat_eq_succ x0);
intro Hx0; rewrite <- H0 in Hx0; apply f_equal with (f := Zpos);
apply nat_of_P_inj; auto with arith
| absurd (0 <= Zneg p);
[ unfold Zle in |- *; simpl in |- *; do 2 unfold not in |- *;
auto with arith
| assumption ] ].
Qed.
Lemma Z_of_nat_prop :
forall P:Z -> Prop,
(forall n:nat, P (Z_of_nat n)) -> forall x:Z, 0 <= x -> P x.
Proof.
intros P H x H0.
specialize (Z_of_nat_complete x H0).
intros Hn; elim Hn; intros.
rewrite H1; apply H.
Qed.
Lemma Z_of_nat_set :
forall P:Z -> Set,
(forall n:nat, P (Z_of_nat n)) -> forall x:Z, 0 <= x -> P x.
Proof.
intros P H x H0.
specialize (Z_of_nat_complete_inf x H0).
intros Hn; elim Hn; intros.
rewrite p; apply H.
Qed.
Lemma natlike_ind :
forall P:Z -> Prop,
P 0 ->
(forall x:Z, 0 <= x -> P x -> P (Zsucc x)) -> forall x:Z, 0 <= x -> P x.
Proof.
intros P H H0 x H1; apply Z_of_nat_prop;
[ simple induction n;
[ simpl in |- *; assumption
| intros; rewrite (inj_S n0); exact (H0 (Z_of_nat n0) (Zle_0_nat n0) H2) ]
| assumption ].
Qed.
Lemma natlike_rec :
forall P:Z -> Set,
P 0 ->
(forall x:Z, 0 <= x -> P x -> P (Zsucc x)) -> forall x:Z, 0 <= x -> P x.
Proof.
intros P H H0 x H1; apply Z_of_nat_set;
[ simple induction n;
[ simpl in |- *; assumption
| intros; rewrite (inj_S n0); exact (H0 (Z_of_nat n0) (Zle_0_nat n0) H2) ]
| assumption ].
Qed.
Section Efficient_Rec.
(** [natlike_rec2] is the same as [natlike_rec], but with a different proof, designed
to give a better extracted term. *)
Let R (a b:Z) := 0 <= a /\ a < b.
Let R_wf : well_founded R.
Proof.
set
(f :=
fun z =>
match z with
| Zpos p => nat_of_P p
| Z0 => 0%nat
| Zneg _ => 0%nat
end) in *.
apply well_founded_lt_compat with f.
unfold R, f in |- *; clear f R.
intros x y; case x; intros; elim H; clear H.
case y; intros; apply lt_O_nat_of_P || inversion H0.
case y; intros; apply nat_of_P_lt_Lt_compare_morphism || inversion H0; auto.
intros; elim H; auto.
Qed.
Lemma natlike_rec2 :
forall P:Z -> Type,
P 0 ->
(forall z:Z, 0 <= z -> P z -> P (Zsucc z)) -> forall z:Z, 0 <= z -> P z.
Proof.
intros P Ho Hrec z; pattern z in |- *;
apply (well_founded_induction_type R_wf).
intro x; case x.
trivial.
intros.
assert (0 <= Zpred (Zpos p)).
apply Zorder.Zlt_0_le_0_pred; unfold Zlt in |- *; simpl in |- *; trivial.
rewrite Zsucc_pred.
apply Hrec.
auto.
apply X; auto; unfold R in |- *; intuition; apply Zlt_pred.
intros; elim H; simpl in |- *; trivial.
Qed.
(** A variant of the previous using [Zpred] instead of [Zs]. *)
Lemma natlike_rec3 :
forall P:Z -> Type,
P 0 ->
(forall z:Z, 0 < z -> P (Zpred z) -> P z) -> forall z:Z, 0 <= z -> P z.
Proof.
intros P Ho Hrec z; pattern z in |- *;
apply (well_founded_induction_type R_wf).
intro x; case x.
trivial.
intros; apply Hrec.
unfold Zlt in |- *; trivial.
assert (0 <= Zpred (Zpos p)).
apply Zorder.Zlt_0_le_0_pred; unfold Zlt in |- *; simpl in |- *; trivial.
apply X; auto; unfold R in |- *; intuition; apply Zlt_pred.
intros; elim H; simpl in |- *; trivial.
Qed.
(** A more general induction principle on non-negative numbers using [Zlt]. *)
Lemma Zlt_0_rec :
forall P:Z -> Type,
(forall x:Z, (forall y:Z, 0 <= y < x -> P y) -> 0 <= x -> P x) ->
forall x:Z, 0 <= x -> P x.
Proof.
intros P Hrec z; pattern z in |- *; apply (well_founded_induction_type R_wf).
intro x; case x; intros.
apply Hrec; intros.
assert (H2 : 0 < 0).
apply Zle_lt_trans with y; intuition.
inversion H2.
assumption.
firstorder.
unfold Zle, Zcompare in H; elim H; auto.
Defined.
Lemma Zlt_0_ind :
forall P:Z -> Prop,
(forall x:Z, (forall y:Z, 0 <= y < x -> P y) -> 0 <= x -> P x) ->
forall x:Z, 0 <= x -> P x.
Proof.
exact Zlt_0_rec.
Qed.
(** Obsolete version of [Zlt] induction principle on non-negative numbers *)
Lemma Z_lt_rec :
forall P:Z -> Type,
(forall x:Z, (forall y:Z, 0 <= y < x -> P y) -> P x) ->
forall x:Z, 0 <= x -> P x.
Proof.
intros P Hrec; apply Zlt_0_rec; auto.
Qed.
Lemma Z_lt_induction :
forall P:Z -> Prop,
(forall x:Z, (forall y:Z, 0 <= y < x -> P y) -> P x) ->
forall x:Z, 0 <= x -> P x.
Proof.
exact Z_lt_rec.
Qed.
(** An even more general induction principle using [Zlt]. *)
Lemma Zlt_lower_bound_rec :
forall P:Z -> Type, forall z:Z,
(forall x:Z, (forall y:Z, z <= y < x -> P y) -> z <= x -> P x) ->
forall x:Z, z <= x -> P x.
Proof.
intros P z Hrec x.
assert (Hexpand : forall x, x = x - z + z).
intro; unfold Zminus; rewrite <- Zplus_assoc; rewrite Zplus_opp_l;
rewrite Zplus_0_r; trivial.
intro Hz.
rewrite (Hexpand x); pattern (x - z) in |- *; apply Zlt_0_rec.
2: apply Zplus_le_reg_r with z; rewrite <- Hexpand; assumption.
intros x0 Hlt_x0 H.
apply Hrec.
2: change z with (0+z); apply Zplus_le_compat_r; assumption.
intro y; rewrite (Hexpand y); intros.
destruct H0.
apply Hlt_x0.
split.
apply Zplus_le_reg_r with z; assumption.
apply Zplus_lt_reg_r with z; assumption.
Qed.
Lemma Zlt_lower_bound_ind :
forall P:Z -> Prop, forall z:Z,
(forall x:Z, (forall y:Z, z <= y < x -> P y) -> z <= x -> P x) ->
forall x:Z, z <= x -> P x.
Proof.
exact Zlt_lower_bound_rec.
Qed.
End Efficient_Rec.
|