1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Arith_base.
(** [fin n] is a convinient way to represent \[1 .. n\]
[fin n] can be seen as a n-uplet of unit where [F1] is the first element of
the n-uplet and [FS] set (n-1)-uplet of all the element but the first.
Author: Pierre Boutillier
Institution: PPS, INRIA 12/2010
*)
Inductive t : nat -> Set :=
|F1 : forall {n}, t (S n)
|FS : forall {n}, t n -> t (S n).
Section SCHEMES.
Definition case0 P (p: t 0): P p :=
match p as p' in t n return
match n as n' return t n' -> Type
with |0 => fun f0 => P f0 |S _ => fun _ => @ID end p'
with |F1 _ => @id |FS _ _ => @id end.
Definition caseS (P: forall {n}, t (S n) -> Type)
(P1: forall n, @P n F1) (PS : forall {n} (p: t n), P (FS p))
{n} (p: t (S n)): P p :=
match p with
|F1 k => P1 k
|FS k pp => PS pp
end.
Definition rectS (P: forall {n}, t (S n) -> Type)
(P1: forall n, @P n F1) (PS : forall {n} (p: t (S n)), P p -> P (FS p)):
forall {n} (p: t (S n)), P p :=
fix rectS_fix {n} (p: t (S n)): P p:=
match p with
|F1 k => P1 k
|FS 0 pp => case0 (fun f => P (FS f)) pp
|FS (S k) pp => PS pp (rectS_fix pp)
end.
Definition rect2 (P: forall {n} (a b: t n), Type)
(H0: forall n, @P (S n) F1 F1)
(H1: forall {n} (f: t n), P F1 (FS f))
(H2: forall {n} (f: t n), P (FS f) F1)
(HS: forall {n} (f g : t n), P f g -> P (FS f) (FS g)):
forall {n} (a b: t n), P a b :=
fix rect2_fix {n} (a: t n): forall (b: t n), P a b :=
match a with
|F1 m => fun (b: t (S m)) => match b as b' in t n'
return match n',b' with
|0,_ => @ID
|S n0,b0 => P F1 b0
end with
|F1 m' => H0 m'
|FS m' b' => H1 b'
end
|FS m a' => fun (b: t (S m)) => match b with
|F1 m' => fun aa: t m' => H2 aa
|FS m' b' => fun aa: t m' => HS aa b' (rect2_fix aa b')
end a'
end.
End SCHEMES.
(** [to_nat f] = p iff [f] is the p{^ th} element of [fin m]. *)
Fixpoint to_nat {m} (n : t m) : {i | i < m} :=
match n in t k return {i | i< k} with
|F1 j => exist (fun i => i< S j) 0 (Lt.lt_0_Sn j)
|FS _ p => match to_nat p with |exist i P => exist _ (S i) (Lt.lt_n_S _ _ P) end
end.
(** [of_nat p n] answers the p{^ th} element of [fin n] if p < n or a proof of
p >= n else *)
Fixpoint of_nat (p n : nat) : (t n) + { exists m, p = n + m } :=
match n with
|0 => inright _ (ex_intro (fun x => p = 0 + x) p (@eq_refl _ p))
|S n' => match p with
|0 => inleft _ (F1)
|S p' => match of_nat p' n' with
|inleft f => inleft _ (FS f)
|inright arg => inright _ (match arg with |ex_intro m e =>
ex_intro (fun x => S p' = S n' + x) m (f_equal S e) end)
end
end
end.
(** [of_nat_lt p n H] answers the p{^ th} element of [fin n]
it behaves much better than [of_nat p n] on open term *)
Fixpoint of_nat_lt {p n : nat} : p < n -> t n :=
match n with
|0 => fun H : p < 0 => False_rect _ (Lt.lt_n_O p H)
|S n' => match p with
|0 => fun _ => @F1 n'
|S p' => fun H => FS (of_nat_lt (Lt.lt_S_n _ _ H))
end
end.
Lemma of_nat_to_nat_inv {m} (p : t m) : of_nat_lt (proj2_sig (to_nat p)) = p.
Proof.
induction p.
reflexivity.
simpl; destruct (to_nat p). simpl. subst p; repeat f_equal. apply Peano_dec.le_unique.
Qed.
(** [weak p f] answers a function witch is the identity for the p{^ th} first
element of [fin (p + m)] and [FS (FS .. (FS (f k)))] for [FS (FS .. (FS k))]
with p FSs *)
Fixpoint weak {m}{n} p (f : t m -> t n) :
t (p + m) -> t (p + n) :=
match p as p' return t (p' + m) -> t (p' + n) with
|0 => f
|S p' => fun x => match x with
|F1 n' => fun eq : n' = p' + m => F1
|FS n' y => fun eq : n' = p' + m => FS (weak p' f (eq_rect _ t y _ eq))
end (eq_refl _)
end.
(** The p{^ th} element of [fin m] viewed as the p{^ th} element of
[fin (m + n)] *)
Fixpoint L {m} n (p : t m) : t (m + n) :=
match p with |F1 _ => F1 |FS _ p' => FS (L n p') end.
Lemma L_sanity {m} n (p : t m) : proj1_sig (to_nat (L n p)) = proj1_sig (to_nat p).
Proof.
induction p.
reflexivity.
simpl; destruct (to_nat (L n p)); simpl in *; rewrite IHp. now destruct (to_nat p).
Qed.
(** The p{^ th} element of [fin m] viewed as the p{^ th} element of
[fin (n + m)]
Really really ineficient !!! *)
Definition L_R {m} n (p : t m) : t (n + m).
induction n.
exact p.
exact ((fix LS k (p: t k) :=
match p with
|F1 k' => @F1 (S k')
|FS _ p' => FS (LS _ p')
end) _ IHn).
Defined.
(** The p{^ th} element of [fin m] viewed as the (n + p){^ th} element of
[fin (n + m)] *)
Fixpoint R {m} n (p : t m) : t (n + m) :=
match n with |0 => p |S n' => FS (R n' p) end.
Lemma R_sanity {m} n (p : t m) : proj1_sig (to_nat (R n p)) = n + proj1_sig (to_nat p).
Proof.
induction n.
reflexivity.
simpl; destruct (to_nat (R n p)); simpl in *; rewrite IHn. now destruct (to_nat p).
Qed.
Fixpoint depair {m n} (o : t m) (p : t n) : t (m * n) :=
match o with
|F1 m' => L (m' * n) p
|FS m' o' => R n (depair o' p)
end.
Lemma depair_sanity {m n} (o : t m) (p : t n) :
proj1_sig (to_nat (depair o p)) = n * (proj1_sig (to_nat o)) + (proj1_sig (to_nat p)).
induction o ; simpl.
rewrite L_sanity. now rewrite Mult.mult_0_r.
rewrite R_sanity. rewrite IHo.
rewrite Plus.plus_assoc. destruct (to_nat o); simpl; rewrite Mult.mult_succ_r.
now rewrite (Plus.plus_comm n).
Qed.
|