1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
Require Export RelationPairs SetoidList Orders.
Set Implicit Arguments.
Unset Strict Implicit.
(** * Specialization of results about lists modulo. *)
Module OrderedTypeLists (Import O:OrderedType).
Section ForNotations.
Notation In:=(InA eq).
Notation Inf:=(lelistA lt).
Notation Sort:=(sort lt).
Notation NoDup:=(NoDupA eq).
Lemma In_eq : forall l x y, eq x y -> In x l -> In y l.
Proof. intros. rewrite <- H; auto. Qed.
Lemma ListIn_In : forall l x, List.In x l -> In x l.
Proof. exact (In_InA eq_equiv). Qed.
Lemma Inf_lt : forall l x y, lt x y -> Inf y l -> Inf x l.
Proof. exact (InfA_ltA lt_strorder). Qed.
Lemma Inf_eq : forall l x y, eq x y -> Inf y l -> Inf x l.
Proof. exact (InfA_eqA eq_equiv lt_strorder lt_compat). Qed.
Lemma Sort_Inf_In : forall l x a, Sort l -> Inf a l -> In x l -> lt a x.
Proof. exact (SortA_InfA_InA eq_equiv lt_strorder lt_compat). Qed.
Lemma ListIn_Inf : forall l x, (forall y, List.In y l -> lt x y) -> Inf x l.
Proof. exact (@In_InfA t lt). Qed.
Lemma In_Inf : forall l x, (forall y, In y l -> lt x y) -> Inf x l.
Proof. exact (InA_InfA eq_equiv (ltA:=lt)). Qed.
Lemma Inf_alt :
forall l x, Sort l -> (Inf x l <-> (forall y, In y l -> lt x y)).
Proof. exact (InfA_alt eq_equiv lt_strorder lt_compat). Qed.
Lemma Sort_NoDup : forall l, Sort l -> NoDup l.
Proof. exact (SortA_NoDupA eq_equiv lt_strorder lt_compat) . Qed.
End ForNotations.
Hint Resolve ListIn_In Sort_NoDup Inf_lt.
Hint Immediate In_eq Inf_lt.
End OrderedTypeLists.
(** * Results about keys and data as manipulated in FMaps. *)
Module KeyOrderedType(Import O:OrderedType).
Module Import MO:=OrderedTypeLists(O).
Section Elt.
Variable elt : Type.
Notation key:=t.
Local Open Scope signature_scope.
Definition eqk : relation (key*elt) := eq @@1.
Definition eqke : relation (key*elt) := eq * Logic.eq.
Definition ltk : relation (key*elt) := lt @@1.
Hint Unfold eqk eqke ltk.
(* eqke is stricter than eqk *)
Global Instance eqke_eqk : subrelation eqke eqk.
Proof. firstorder. Qed.
(* eqk, eqke are equalities, ltk is a strict order *)
Global Instance eqk_equiv : Equivalence eqk.
Global Instance eqke_equiv : Equivalence eqke.
Global Instance ltk_strorder : StrictOrder ltk.
Global Instance ltk_compat : Proper (eqk==>eqk==>iff) ltk.
Proof. unfold eqk, ltk; auto with *. Qed.
(* Additionnal facts *)
Global Instance pair_compat : Proper (eq==>Logic.eq==>eqke) (@pair key elt).
Proof. apply pair_compat. Qed.
Lemma ltk_not_eqk : forall e e', ltk e e' -> ~ eqk e e'.
Proof.
intros e e' LT EQ; rewrite EQ in LT.
elim (StrictOrder_Irreflexive _ LT).
Qed.
Lemma ltk_not_eqke : forall e e', ltk e e' -> ~eqke e e'.
Proof.
intros e e' LT EQ; rewrite EQ in LT.
elim (StrictOrder_Irreflexive _ LT).
Qed.
Lemma InA_eqke_eqk :
forall x m, InA eqke x m -> InA eqk x m.
Proof.
unfold eqke, RelProd; induction 1; firstorder.
Qed.
Hint Resolve InA_eqke_eqk.
Definition MapsTo (k:key)(e:elt):= InA eqke (k,e).
Definition In k m := exists e:elt, MapsTo k e m.
Notation Sort := (sort ltk).
Notation Inf := (lelistA ltk).
Hint Unfold MapsTo In.
(* An alternative formulation for [In k l] is [exists e, InA eqk (k,e) l] *)
Lemma In_alt : forall k l, In k l <-> exists e, InA eqk (k,e) l.
Proof.
firstorder.
exists x; auto.
induction H.
destruct y; compute in H.
exists e; left; auto.
destruct IHInA as [e H0].
exists e; auto.
Qed.
Lemma In_alt2 : forall k l, In k l <-> Exists (fun p => eq k (fst p)) l.
Proof.
unfold In, MapsTo.
setoid_rewrite Exists_exists; setoid_rewrite InA_alt.
firstorder.
exists (snd x), x; auto.
Qed.
Lemma In_nil : forall k, In k nil <-> False.
Proof.
intros; rewrite In_alt2; apply Exists_nil.
Qed.
Lemma In_cons : forall k p l,
In k (p::l) <-> eq k (fst p) \/ In k l.
Proof.
intros; rewrite !In_alt2, Exists_cons; intuition.
Qed.
Global Instance MapsTo_compat :
Proper (eq==>Logic.eq==>equivlistA eqke==>iff) MapsTo.
Proof.
intros x x' Hx e e' He l l' Hl. unfold MapsTo.
rewrite Hx, He, Hl; intuition.
Qed.
Global Instance In_compat : Proper (eq==>equivlistA eqk==>iff) In.
Proof.
intros x x' Hx l l' Hl. rewrite !In_alt.
setoid_rewrite Hl. setoid_rewrite Hx. intuition.
Qed.
Lemma MapsTo_eq : forall l x y e, eq x y -> MapsTo x e l -> MapsTo y e l.
Proof. intros l x y e EQ. rewrite <- EQ; auto. Qed.
Lemma In_eq : forall l x y, eq x y -> In x l -> In y l.
Proof. intros l x y EQ. rewrite <- EQ; auto. Qed.
Lemma Inf_eq : forall l x x', eqk x x' -> Inf x' l -> Inf x l.
Proof. intros l x x' H. rewrite H; auto. Qed.
Lemma Inf_lt : forall l x x', ltk x x' -> Inf x' l -> Inf x l.
Proof. apply InfA_ltA; auto with *. Qed.
Hint Immediate Inf_eq.
Hint Resolve Inf_lt.
Lemma Sort_Inf_In :
forall l p q, Sort l -> Inf q l -> InA eqk p l -> ltk q p.
Proof. apply SortA_InfA_InA; auto with *. Qed.
Lemma Sort_Inf_NotIn :
forall l k e, Sort l -> Inf (k,e) l -> ~In k l.
Proof.
intros; red; intros.
destruct H1 as [e' H2].
elim (@ltk_not_eqk (k,e) (k,e')).
eapply Sort_Inf_In; eauto.
repeat red; reflexivity.
Qed.
Lemma Sort_NoDupA: forall l, Sort l -> NoDupA eqk l.
Proof. apply SortA_NoDupA; auto with *. Qed.
Lemma Sort_In_cons_1 : forall e l e', Sort (e::l) -> InA eqk e' l -> ltk e e'.
Proof.
intros; invlist sort; eapply Sort_Inf_In; eauto.
Qed.
Lemma Sort_In_cons_2 : forall l e e', Sort (e::l) -> InA eqk e' (e::l) ->
ltk e e' \/ eqk e e'.
Proof.
intros; invlist InA; auto with relations.
left; apply Sort_In_cons_1 with l; auto with relations.
Qed.
Lemma Sort_In_cons_3 :
forall x l k e, Sort ((k,e)::l) -> In x l -> ~eq x k.
Proof.
intros; invlist sort; red; intros.
eapply Sort_Inf_NotIn; eauto using In_eq.
Qed.
Lemma In_inv : forall k k' e l, In k ((k',e) :: l) -> eq k k' \/ In k l.
Proof.
intros; invlist In; invlist MapsTo. compute in * |- ; intuition.
right; exists x; auto.
Qed.
Lemma In_inv_2 : forall k k' e e' l,
InA eqk (k, e) ((k', e') :: l) -> ~ eq k k' -> InA eqk (k, e) l.
Proof.
intros; invlist InA; intuition.
Qed.
Lemma In_inv_3 : forall x x' l,
InA eqke x (x' :: l) -> ~ eqk x x' -> InA eqke x l.
Proof.
intros; invlist InA; compute in * |- ; intuition.
Qed.
End Elt.
Hint Unfold eqk eqke ltk.
Hint Extern 2 (eqke ?a ?b) => split.
Hint Resolve ltk_not_eqk ltk_not_eqke.
Hint Resolve InA_eqke_eqk.
Hint Unfold MapsTo In.
Hint Immediate Inf_eq.
Hint Resolve Inf_lt.
Hint Resolve Sort_Inf_NotIn.
Hint Resolve In_inv_2 In_inv_3.
End KeyOrderedType.
|