1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* Finite sets library.
* Authors: Pierre Letouzey and Jean-Christophe Filliâtre
* Institution: LRI, CNRS UMR 8623 - Université Paris Sud
* 91405 Orsay, France *)
Require Import OrderedType Orders.
Set Implicit Arguments.
(** * Some alternative (but equivalent) presentations for an Ordered Type
inferface. *)
(** ** The original interface *)
Module Type OrderedTypeOrig := OrderedType.OrderedType.
(** ** An interface based on compare *)
Module Type OrderedTypeAlt.
Parameter t : Type.
Parameter compare : t -> t -> comparison.
Infix "?=" := compare (at level 70, no associativity).
Parameter compare_sym :
forall x y, (y?=x) = CompOpp (x?=y).
Parameter compare_trans :
forall c x y z, (x?=y) = c -> (y?=z) = c -> (x?=z) = c.
End OrderedTypeAlt.
(** ** From OrderedTypeOrig to OrderedType. *)
Module Update_OT (O:OrderedTypeOrig) <: OrderedType.
Include Update_DT O. (* Provides : t eq eq_equiv eq_dec *)
Definition lt := O.lt.
Instance lt_strorder : StrictOrder lt.
Proof.
split.
intros x Hx. apply (O.lt_not_eq Hx); auto with *.
exact O.lt_trans.
Qed.
Instance lt_compat : Proper (eq==>eq==>iff) lt.
Proof.
apply proper_sym_impl_iff_2; auto with *.
intros x x' Hx y y' Hy H.
assert (H0 : lt x' y).
destruct (O.compare x' y) as [H'|H'|H']; auto.
elim (O.lt_not_eq H). transitivity x'; auto with *.
elim (O.lt_not_eq (O.lt_trans H H')); auto.
destruct (O.compare x' y') as [H'|H'|H']; auto.
elim (O.lt_not_eq H).
transitivity x'; auto with *. transitivity y'; auto with *.
elim (O.lt_not_eq (O.lt_trans H' H0)); auto with *.
Qed.
Definition compare x y :=
match O.compare x y with
| EQ _ => Eq
| LT _ => Lt
| GT _ => Gt
end.
Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
Proof.
intros; unfold compare; destruct O.compare; auto.
Qed.
End Update_OT.
(** ** From OrderedType to OrderedTypeOrig. *)
Module Backport_OT (O:OrderedType) <: OrderedTypeOrig.
Include Backport_DT O. (* Provides : t eq eq_refl eq_sym eq_trans eq_dec *)
Definition lt := O.lt.
Lemma lt_not_eq : forall x y, lt x y -> ~eq x y.
Proof.
intros x y L E; rewrite E in L. apply (StrictOrder_Irreflexive y); auto.
Qed.
Lemma lt_trans : Transitive lt.
Proof. apply O.lt_strorder. Qed.
Definition compare : forall x y, Compare lt eq x y.
Proof.
intros x y; destruct (CompSpec2Type (O.compare_spec x y));
[apply EQ|apply LT|apply GT]; auto.
Defined.
End Backport_OT.
(** ** From OrderedTypeAlt to OrderedType. *)
Module OT_from_Alt (Import O:OrderedTypeAlt) <: OrderedType.
Definition t := t.
Definition eq x y := (x?=y) = Eq.
Definition lt x y := (x?=y) = Lt.
Instance eq_equiv : Equivalence eq.
Proof.
split; red.
(* refl *)
unfold eq; intros x.
assert (H:=compare_sym x x).
destruct (x ?= x); simpl in *; auto; discriminate.
(* sym *)
unfold eq; intros x y H.
rewrite compare_sym, H; simpl; auto.
(* trans *)
apply compare_trans.
Qed.
Instance lt_strorder : StrictOrder lt.
Proof.
split; repeat red; unfold lt; try apply compare_trans.
intros x H.
assert (eq x x) by reflexivity.
unfold eq in *; congruence.
Qed.
Lemma lt_eq : forall x y z, lt x y -> eq y z -> lt x z.
Proof.
unfold lt, eq; intros x y z Hxy Hyz.
destruct (compare x z) eqn:Hxz; auto.
rewrite compare_sym, CompOpp_iff in Hyz. simpl in Hyz.
rewrite (compare_trans Hxz Hyz) in Hxy; discriminate.
rewrite compare_sym, CompOpp_iff in Hxy. simpl in Hxy.
rewrite (compare_trans Hxy Hxz) in Hyz; discriminate.
Qed.
Lemma eq_lt : forall x y z, eq x y -> lt y z -> lt x z.
Proof.
unfold lt, eq; intros x y z Hxy Hyz.
destruct (compare x z) eqn:Hxz; auto.
rewrite compare_sym, CompOpp_iff in Hxy. simpl in Hxy.
rewrite (compare_trans Hxy Hxz) in Hyz; discriminate.
rewrite compare_sym, CompOpp_iff in Hyz. simpl in Hyz.
rewrite (compare_trans Hxz Hyz) in Hxy; discriminate.
Qed.
Instance lt_compat : Proper (eq==>eq==>iff) lt.
Proof.
apply proper_sym_impl_iff_2; auto with *.
repeat red; intros.
eapply lt_eq; eauto. eapply eq_lt; eauto. symmetry; auto.
Qed.
Definition compare := O.compare.
Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
Proof.
unfold eq, lt, compare; intros.
destruct (O.compare x y) eqn:H; auto.
apply CompGt.
rewrite compare_sym, H; auto.
Qed.
Definition eq_dec : forall x y, { eq x y } + { ~ eq x y }.
Proof.
intros; unfold eq.
case (x ?= y); [ left | right | right ]; auto; discriminate.
Defined.
End OT_from_Alt.
(** From the original presentation to this alternative one. *)
Module OT_to_Alt (Import O:OrderedType) <: OrderedTypeAlt.
Definition t := t.
Definition compare := compare.
Infix "?=" := compare (at level 70, no associativity).
Lemma compare_sym :
forall x y, (y?=x) = CompOpp (x?=y).
Proof.
intros x y; unfold compare.
destruct (compare_spec x y) as [U|U|U];
destruct (compare_spec y x) as [V|V|V]; auto.
rewrite U in V. elim (StrictOrder_Irreflexive y); auto.
rewrite U in V. elim (StrictOrder_Irreflexive y); auto.
rewrite V in U. elim (StrictOrder_Irreflexive x); auto.
rewrite V in U. elim (StrictOrder_Irreflexive x); auto.
rewrite V in U. elim (StrictOrder_Irreflexive x); auto.
rewrite V in U. elim (StrictOrder_Irreflexive y); auto.
Qed.
Lemma compare_Eq : forall x y, compare x y = Eq <-> eq x y.
Proof.
unfold compare.
intros x y; destruct (compare_spec x y); intuition;
try discriminate.
rewrite H0 in H. elim (StrictOrder_Irreflexive y); auto.
rewrite H0 in H. elim (StrictOrder_Irreflexive y); auto.
Qed.
Lemma compare_Lt : forall x y, compare x y = Lt <-> lt x y.
Proof.
unfold compare.
intros x y; destruct (compare_spec x y); intuition;
try discriminate.
rewrite H in H0. elim (StrictOrder_Irreflexive y); auto.
rewrite H in H0. elim (StrictOrder_Irreflexive x); auto.
Qed.
Lemma compare_Gt : forall x y, compare x y = Gt <-> lt y x.
Proof.
intros x y. rewrite compare_sym, CompOpp_iff. apply compare_Lt.
Qed.
Lemma compare_trans :
forall c x y z, (x?=y) = c -> (y?=z) = c -> (x?=z) = c.
Proof.
intros c x y z.
destruct c; unfold compare;
rewrite ?compare_Eq, ?compare_Lt, ?compare_Gt;
transitivity y; auto.
Qed.
End OT_to_Alt.
|