summaryrefslogtreecommitdiff
path: root/theories/Structures/EqualitiesFacts.v
blob: d9b1d76fdf47023c2a0f59d08b5e78ae695ae627 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

Require Import Equalities Bool SetoidList RelationPairs.

(** In a BooleanEqualityType, [eqb] is compatible with [eq] *)

Module BoolEqualityFacts (Import E : BooleanEqualityType).

Instance eqb_compat : Proper (E.eq ==> E.eq ==> Logic.eq) eqb.
Proof.
intros x x' Exx' y y' Eyy'.
apply eq_true_iff_eq.
rewrite 2 eqb_eq, Exx', Eyy'; auto with *.
Qed.

End BoolEqualityFacts.


(** * Keys and datas used in FMap *)
Module KeyDecidableType(Import D:DecidableType).

 Section Elt.
 Variable elt : Type.
 Notation key:=t.

  Local Open Scope signature_scope.

  Definition eqk : relation (key*elt) := eq @@1.
  Definition eqke : relation (key*elt) := eq * Logic.eq.
  Hint Unfold eqk eqke.

  (* eqke is stricter than eqk *)

  Global Instance eqke_eqk : subrelation eqke eqk.
  Proof. firstorder. Qed.

  (* eqk, eqke are equalities, ltk is a strict order *)

  Global Instance eqk_equiv : Equivalence eqk.

  Global Instance eqke_equiv : Equivalence eqke.

  (* Additionnal facts *)

  Lemma InA_eqke_eqk :
     forall x m, InA eqke x m -> InA eqk x m.
  Proof.
    unfold eqke, RelProd; induction 1; firstorder.
  Qed.
  Hint Resolve InA_eqke_eqk.

  Lemma InA_eqk : forall p q m, eqk p q -> InA eqk p m -> InA eqk q m.
  Proof.
   intros. rewrite <- H; auto.
  Qed.

  Definition MapsTo (k:key)(e:elt):= InA eqke (k,e).
  Definition In k m := exists e:elt, MapsTo k e m.

  Hint Unfold MapsTo In.

  (* An alternative formulation for [In k l] is [exists e, InA eqk (k,e) l] *)

  Lemma In_alt : forall k l, In k l <-> exists e, InA eqk (k,e) l.
  Proof.
  firstorder.
  exists x; auto.
  induction H.
  destruct y; compute in H.
  exists e; left; auto.
  destruct IHInA as [e H0].
  exists e; auto.
  Qed.

  Lemma In_alt2 : forall k l, In k l <-> Exists (fun p => eq k (fst p)) l.
  Proof.
  unfold In, MapsTo.
  setoid_rewrite Exists_exists; setoid_rewrite InA_alt.
  firstorder.
  exists (snd x), x; auto.
  Qed.

  Lemma In_nil : forall k, In k nil <-> False.
  Proof.
  intros; rewrite In_alt2; apply Exists_nil.
  Qed.

  Lemma In_cons : forall k p l,
   In k (p::l) <-> eq k (fst p) \/ In k l.
  Proof.
  intros; rewrite !In_alt2, Exists_cons; intuition.
  Qed.

  Global Instance MapsTo_compat :
   Proper (eq==>Logic.eq==>equivlistA eqke==>iff) MapsTo.
  Proof.
  intros x x' Hx e e' He l l' Hl. unfold MapsTo.
  rewrite Hx, He, Hl; intuition.
  Qed.

  Global Instance In_compat : Proper (eq==>equivlistA eqk==>iff) In.
  Proof.
  intros x x' Hx l l' Hl. rewrite !In_alt.
  setoid_rewrite Hl. setoid_rewrite Hx. intuition.
  Qed.

  Lemma MapsTo_eq : forall l x y e, eq x y -> MapsTo x e l -> MapsTo y e l.
  Proof. intros l x y e EQ. rewrite <- EQ; auto. Qed.

  Lemma In_eq : forall l x y, eq x y -> In x l -> In y l.
  Proof. intros l x y EQ. rewrite <- EQ; auto. Qed.

  Lemma In_inv : forall k k' e l, In k ((k',e) :: l) -> eq k k' \/ In k l.
  Proof.
    intros; invlist In; invlist MapsTo. compute in * |- ; intuition.
    right; exists x; auto.
  Qed.

  Lemma In_inv_2 : forall k k' e e' l,
      InA eqk (k, e) ((k', e') :: l) -> ~ eq k k' -> InA eqk (k, e) l.
  Proof.
   intros; invlist InA; intuition.
  Qed.

  Lemma In_inv_3 : forall x x' l,
      InA eqke x (x' :: l) -> ~ eqk x x' -> InA eqke x l.
  Proof.
   intros; invlist InA; compute in * |- ; intuition.
  Qed.

 End Elt.

 Hint Unfold eqk eqke.
 Hint Extern 2 (eqke ?a ?b) => split.
 Hint Resolve InA_eqke_eqk.
 Hint Unfold MapsTo In.
 Hint Resolve In_inv_2 In_inv_3.

End KeyDecidableType.


(** * PairDecidableType 
   
   From two decidable types, we can build a new DecidableType
   over their cartesian product. *)

Module PairDecidableType(D1 D2:DecidableType) <: DecidableType.

 Definition t := (D1.t * D2.t)%type.

 Definition eq := (D1.eq * D2.eq)%signature.

 Instance eq_equiv : Equivalence eq.

 Definition eq_dec : forall x y, { eq x y }+{ ~eq x y }.
 Proof.
 intros (x1,x2) (y1,y2); unfold eq; simpl.
 destruct (D1.eq_dec x1 y1); destruct (D2.eq_dec x2 y2);
  compute; intuition.
 Defined.

End PairDecidableType.

(** Similarly for pairs of UsualDecidableType *)

Module PairUsualDecidableType(D1 D2:UsualDecidableType) <: UsualDecidableType.
 Definition t := (D1.t * D2.t)%type.
 Definition eq := @eq t.
 Program Instance eq_equiv : Equivalence eq.
 Definition eq_dec : forall x y, { eq x y }+{ ~eq x y }.
 Proof.
 intros (x1,x2) (y1,y2);
 destruct (D1.eq_dec x1 y1); destruct (D2.eq_dec x2 y2);
 unfold eq, D1.eq, D2.eq in *; simpl;
 (left; f_equal; auto; fail) ||
 (right; intro H; injection H; auto).
 Defined.

End PairUsualDecidableType.