1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*********************************************************************)
(** * List permutations as a composition of adjacent transpositions *)
(*********************************************************************)
(* Adapted in May 2006 by Jean-Marc Notin from initial contents by
Laurent Théry (Huffmann contribution, October 2003) *)
Require Import List Setoid.
Set Implicit Arguments.
Local Notation "[ ]" := nil.
Local Notation "[ a ; .. ; b ]" := (a :: .. (b :: []) ..).
Section Permutation.
Variable A:Type.
Inductive Permutation : list A -> list A -> Prop :=
| perm_nil: Permutation [] []
| perm_skip x l l' : Permutation l l' -> Permutation (x::l) (x::l')
| perm_swap x y l : Permutation (y::x::l) (x::y::l)
| perm_trans l l' l'' : Permutation l l' -> Permutation l' l'' -> Permutation l l''.
Local Hint Constructors Permutation.
(** Some facts about [Permutation] *)
Theorem Permutation_nil : forall (l : list A), Permutation [] l -> l = [].
Proof.
intros l HF.
remember (@nil A) as m in HF.
induction HF; discriminate || auto.
Qed.
Theorem Permutation_nil_cons : forall (l : list A) (x : A), ~ Permutation nil (x::l).
Proof.
intros l x HF.
apply Permutation_nil in HF; discriminate.
Qed.
(** Permutation over lists is a equivalence relation *)
Theorem Permutation_refl : forall l : list A, Permutation l l.
Proof.
induction l; constructor. exact IHl.
Qed.
Theorem Permutation_sym : forall l l' : list A, Permutation l l' -> Permutation l' l.
Proof.
intros l l' Hperm; induction Hperm; auto.
apply perm_trans with (l':=l'); assumption.
Qed.
Theorem Permutation_trans : forall l l' l'' : list A, Permutation l l' -> Permutation l' l'' -> Permutation l l''.
Proof.
exact perm_trans.
Qed.
End Permutation.
Hint Resolve Permutation_refl perm_nil perm_skip.
(* These hints do not reduce the size of the problem to solve and they
must be used with care to avoid combinatoric explosions *)
Local Hint Resolve perm_swap perm_trans.
Local Hint Resolve Permutation_sym Permutation_trans.
(* This provides reflexivity, symmetry and transitivity and rewriting
on morphims to come *)
Instance Permutation_Equivalence A : Equivalence (@Permutation A) | 10 := {
Equivalence_Reflexive := @Permutation_refl A ;
Equivalence_Symmetric := @Permutation_sym A ;
Equivalence_Transitive := @Permutation_trans A }.
Add Parametric Morphism A (a:A) : (cons a)
with signature @Permutation A ==> @Permutation A
as Permutation_cons.
Proof.
auto using perm_skip.
Qed.
Section Permutation_properties.
Variable A:Type.
Implicit Types a b : A.
Implicit Types l m : list A.
(** Compatibility with others operations on lists *)
Theorem Permutation_in : forall (l l' : list A) (x : A), Permutation l l' -> In x l -> In x l'.
Proof.
intros l l' x Hperm; induction Hperm; simpl; tauto.
Qed.
Lemma Permutation_app_tail : forall (l l' tl : list A), Permutation l l' -> Permutation (l++tl) (l'++tl).
Proof.
intros l l' tl Hperm; induction Hperm as [|x l l'|x y l|l l' l'']; simpl; auto.
eapply Permutation_trans with (l':=l'++tl); trivial.
Qed.
Lemma Permutation_app_head : forall (l tl tl' : list A), Permutation tl tl' -> Permutation (l++tl) (l++tl').
Proof.
intros l tl tl' Hperm; induction l; [trivial | repeat rewrite <- app_comm_cons; constructor; assumption].
Qed.
Theorem Permutation_app : forall (l m l' m' : list A), Permutation l l' -> Permutation m m' -> Permutation (l++m) (l'++m').
Proof.
intros l m l' m' Hpermll' Hpermmm'; induction Hpermll' as [|x l l'|x y l|l l' l'']; repeat rewrite <- app_comm_cons; auto.
apply Permutation_trans with (l' := (x :: y :: l ++ m));
[idtac | repeat rewrite app_comm_cons; apply Permutation_app_head]; trivial.
apply Permutation_trans with (l' := (l' ++ m')); try assumption.
apply Permutation_app_tail; assumption.
Qed.
Add Parametric Morphism : (@app A)
with signature @Permutation A ==> @Permutation A ==> @Permutation A
as Permutation_app'.
auto using Permutation_app.
Qed.
Lemma Permutation_add_inside : forall a (l l' tl tl' : list A),
Permutation l l' -> Permutation tl tl' ->
Permutation (l ++ a :: tl) (l' ++ a :: tl').
Proof.
intros; apply Permutation_app; auto.
Qed.
Lemma Permutation_cons_append : forall (l : list A) x,
Permutation (x :: l) (l ++ x :: nil).
Proof. induction l; intros; auto. simpl. rewrite <- IHl; auto. Qed.
Local Hint Resolve Permutation_cons_append.
Theorem Permutation_app_comm : forall (l l' : list A),
Permutation (l ++ l') (l' ++ l).
Proof.
induction l as [|x l]; simpl; intro l'.
rewrite app_nil_r; trivial. rewrite IHl.
rewrite app_comm_cons, Permutation_cons_append.
now rewrite <- app_assoc.
Qed.
Local Hint Resolve Permutation_app_comm.
Theorem Permutation_cons_app : forall (l l1 l2:list A) a,
Permutation l (l1 ++ l2) -> Permutation (a :: l) (l1 ++ a :: l2).
Proof. intros l l1 l2 a H. rewrite H.
rewrite app_comm_cons, Permutation_cons_append.
now rewrite <- app_assoc.
Qed.
Local Hint Resolve Permutation_cons_app.
Theorem Permutation_middle : forall (l1 l2:list A) a,
Permutation (a :: l1 ++ l2) (l1 ++ a :: l2).
Proof.
auto.
Qed.
Local Hint Resolve Permutation_middle.
Theorem Permutation_rev : forall (l : list A), Permutation l (rev l).
Proof.
induction l as [| x l]; simpl; trivial. now rewrite IHl at 1.
Qed.
Add Parametric Morphism : (@rev A)
with signature @Permutation A ==> @Permutation A as Permutation_rev'.
Proof. intros. now do 2 rewrite <- Permutation_rev. Qed.
Theorem Permutation_length : forall (l l' : list A), Permutation l l' -> length l = length l'.
Proof.
intros l l' Hperm; induction Hperm; simpl; auto. now transitivity (length l').
Qed.
Theorem Permutation_ind_bis :
forall P : list A -> list A -> Prop,
P [] [] ->
(forall x l l', Permutation l l' -> P l l' -> P (x :: l) (x :: l')) ->
(forall x y l l', Permutation l l' -> P l l' -> P (y :: x :: l) (x :: y :: l')) ->
(forall l l' l'', Permutation l l' -> P l l' -> Permutation l' l'' -> P l' l'' -> P l l'') ->
forall l l', Permutation l l' -> P l l'.
Proof.
intros P Hnil Hskip Hswap Htrans.
induction 1; auto.
apply Htrans with (x::y::l); auto.
apply Hswap; auto.
induction l; auto.
apply Hskip; auto.
apply Hskip; auto.
induction l; auto.
eauto.
Qed.
Ltac break_list l x l' H :=
destruct l as [|x l']; simpl in *;
injection H; intros; subst; clear H.
Theorem Permutation_nil_app_cons : forall (l l' : list A) (x : A), ~ Permutation nil (l++x::l').
Proof.
intros l l' x HF.
apply Permutation_nil in HF. destruct l; discriminate.
Qed.
Theorem Permutation_app_inv : forall (l1 l2 l3 l4:list A) a,
Permutation (l1++a::l2) (l3++a::l4) -> Permutation (l1++l2) (l3 ++ l4).
Proof.
set (P l l' :=
forall a l1 l2 l3 l4, l=l1++a::l2 -> l'=l3++a::l4 -> Permutation (l1++l2) (l3++l4)).
cut (forall l l', Permutation l l' -> P l l').
intros; apply (H _ _ H0 a); auto.
intros; apply (Permutation_ind_bis P); unfold P; clear P; try clear H l l'; simpl; auto.
(* nil *)
intros; destruct l1; simpl in *; discriminate.
(* skip *)
intros x l l' H IH; intros.
break_list l1 b l1' H0; break_list l3 c l3' H1.
auto.
now rewrite H.
now rewrite <- H.
now rewrite (IH a _ _ _ _ eq_refl eq_refl).
(* contradict *)
intros x y l l' Hp IH; intros.
break_list l1 b l1' H; break_list l3 c l3' H0.
auto.
break_list l3' b l3'' H.
auto.
rewrite <- Permutation_middle in Hp. now rewrite Hp.
break_list l1' c l1'' H1.
auto.
rewrite <- Permutation_middle in Hp. now rewrite Hp.
break_list l3' d l3'' H; break_list l1' e l1'' H1.
auto.
rewrite <- Permutation_middle in Hp. rewrite perm_swap. auto.
rewrite perm_swap, Permutation_middle. auto.
now rewrite perm_swap, (IH a _ _ _ _ eq_refl eq_refl).
(*trans*)
intros.
destruct (In_split a l') as (l'1,(l'2,H6)).
apply (Permutation_in a H).
subst l.
apply in_or_app; right; red; auto.
apply perm_trans with (l'1++l'2).
apply (H0 _ _ _ _ _ H3 H6).
apply (H2 _ _ _ _ _ H6 H4).
Qed.
Theorem Permutation_cons_inv :
forall l l' a, Permutation (a::l) (a::l') -> Permutation l l'.
Proof.
intros; exact (Permutation_app_inv [] l [] l' a H).
Qed.
Theorem Permutation_cons_app_inv :
forall l l1 l2 a, Permutation (a :: l) (l1 ++ a :: l2) -> Permutation l (l1 ++ l2).
Proof.
intros; exact (Permutation_app_inv [] l l1 l2 a H).
Qed.
Theorem Permutation_app_inv_l :
forall l l1 l2, Permutation (l ++ l1) (l ++ l2) -> Permutation l1 l2.
Proof.
induction l; simpl; auto.
intros.
apply IHl.
apply Permutation_cons_inv with a; auto.
Qed.
Theorem Permutation_app_inv_r :
forall l l1 l2, Permutation (l1 ++ l) (l2 ++ l) -> Permutation l1 l2.
Proof.
induction l.
intros l1 l2; do 2 rewrite app_nil_r; auto.
intros.
apply IHl.
apply Permutation_app_inv with a; auto.
Qed.
Lemma Permutation_length_1_inv: forall a l, Permutation [a] l -> l = [a].
Proof.
intros a l H; remember [a] as m in H.
induction H; try (injection Heqm as -> ->; clear Heqm);
discriminate || auto.
apply Permutation_nil in H as ->; trivial.
Qed.
Lemma Permutation_length_1: forall a b, Permutation [a] [b] -> a = b.
Proof.
intros a b H.
apply Permutation_length_1_inv in H; injection H as ->; trivial.
Qed.
Lemma Permutation_length_2_inv :
forall a1 a2 l, Permutation [a1;a2] l -> l = [a1;a2] \/ l = [a2;a1].
Proof.
intros a1 a2 l H; remember [a1;a2] as m in H.
revert a1 a2 Heqm.
induction H; intros; try (injection Heqm; intros; subst; clear Heqm);
discriminate || (try tauto).
apply Permutation_length_1_inv in H as ->; left; auto.
apply IHPermutation1 in Heqm as [H1|H1]; apply IHPermutation2 in H1 as ();
auto.
Qed.
Lemma Permutation_length_2 :
forall a1 a2 b1 b2, Permutation [a1;a2] [b1;b2] ->
a1 = b1 /\ a2 = b2 \/ a1 = b2 /\ a2 = b1.
Proof.
intros a1 b1 a2 b2 H.
apply Permutation_length_2_inv in H as [H|H]; injection H as -> ->; auto.
Qed.
Lemma NoDup_Permutation : forall l l',
NoDup l -> NoDup l' -> (forall x:A, In x l <-> In x l') -> Permutation l l'.
Proof.
induction l.
destruct l'; simpl; intros.
apply perm_nil.
destruct (H1 a) as (_,H2); destruct H2; auto.
intros.
destruct (In_split a l') as (l'1,(l'2,H2)).
destruct (H1 a) as (H2,H3); simpl in *; auto.
subst l'.
apply Permutation_cons_app.
inversion_clear H.
apply IHl; auto.
apply NoDup_remove_1 with a; auto.
intro x; split; intros.
assert (In x (l'1++a::l'2)).
destruct (H1 x); simpl in *; auto.
apply in_or_app; destruct (in_app_or _ _ _ H4); auto.
destruct H5; auto.
subst x; destruct H2; auto.
assert (In x (l'1++a::l'2)).
apply in_or_app; destruct (in_app_or _ _ _ H); simpl; auto.
destruct (H1 x) as (_,H5); destruct H5; auto.
subst x.
destruct (NoDup_remove_2 _ _ _ H0 H).
Qed.
End Permutation_properties.
Section Permutation_map.
Variable A B : Type.
Variable f : A -> B.
Add Parametric Morphism : (map f)
with signature (@Permutation A) ==> (@Permutation B) as Permutation_map_aux.
Proof.
induction 1; simpl; eauto using Permutation.
Qed.
Lemma Permutation_map :
forall l l', Permutation l l' -> Permutation (map f l) (map f l').
Proof.
exact Permutation_map_aux_Proper.
Qed.
End Permutation_map.
(* begin hide *)
Notation Permutation_app_swap := Permutation_app_comm (only parsing).
(* end hide *)
|