summaryrefslogtreecommitdiff
path: root/theories/Sets/Relations_3.v
blob: 51092f7a78ed4105072aa72f86f505bfb9b41464 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(****************************************************************************)
(*                                                                          *)
(*                         Naive Set Theory in Coq                          *)
(*                                                                          *)
(*                     INRIA                        INRIA                   *)
(*              Rocquencourt                        Sophia-Antipolis        *)
(*                                                                          *)
(*                                 Coq V6.1                                 *)
(*									    *)
(*			         Gilles Kahn 				    *)
(*				 Gerard Huet				    *)
(*									    *)
(*									    *)
(*                                                                          *)
(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks  *)
(* to the Newton Institute for providing an exceptional work environment    *)
(* in Summer 1995. Several developments by E. Ledinot were an inspiration.  *)
(****************************************************************************)

Require Export Relations_1.
Require Export Relations_2.

Section Relations_3.
   Variable U : Type.
   Variable R : Relation U.

   Definition coherent (x y:U) : Prop :=
      exists z : _, Rstar U R x z /\ Rstar U R y z.

   Definition locally_confluent (x:U) : Prop :=
     forall y z:U, R x y -> R x z -> coherent y z.

   Definition Locally_confluent : Prop := forall x:U, locally_confluent x.

   Definition confluent (x:U) : Prop :=
     forall y z:U, Rstar U R x y -> Rstar U R x z -> coherent y z.

   Definition Confluent : Prop := forall x:U, confluent x.

   Inductive noetherian (x: U) : Prop :=
       definition_of_noetherian :
         (forall y:U, R x y -> noetherian y) -> noetherian x.

   Definition Noetherian : Prop := forall x:U, noetherian x.

End Relations_3.
Hint Unfold coherent: sets v62.
Hint Unfold locally_confluent: sets v62.
Hint Unfold confluent: sets v62.
Hint Unfold Confluent: sets v62.
Hint Resolve definition_of_noetherian: sets v62.
Hint Unfold Noetherian: sets v62.