1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(****************************************************************************)
(* *)
(* Naive Set Theory in Coq *)
(* *)
(* INRIA INRIA *)
(* Rocquencourt Sophia-Antipolis *)
(* *)
(* Coq V6.1 *)
(* *)
(* Gilles Kahn *)
(* Gerard Huet *)
(* *)
(* *)
(* *)
(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
(* to the Newton Institute for providing an exceptional work environment *)
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
(*i $Id$ i*)
Require Export Relations_1.
Require Export Relations_1_facts.
Require Export Relations_2.
Theorem Rstar_reflexive :
forall (U:Type) (R:Relation U), Reflexive U (Rstar U R).
Proof.
auto with sets.
Qed.
Theorem Rplus_contains_R :
forall (U:Type) (R:Relation U), contains U (Rplus U R) R.
Proof.
auto with sets.
Qed.
Theorem Rstar_contains_R :
forall (U:Type) (R:Relation U), contains U (Rstar U R) R.
Proof.
intros U R; red in |- *; intros x y H'; apply Rstar_n with y; auto with sets.
Qed.
Theorem Rstar_contains_Rplus :
forall (U:Type) (R:Relation U), contains U (Rstar U R) (Rplus U R).
Proof.
intros U R; red in |- *.
intros x y H'; elim H'.
generalize Rstar_contains_R; intro T; red in T; auto with sets.
intros x0 y0 z H'0 H'1 H'2; apply Rstar_n with y0; auto with sets.
Qed.
Theorem Rstar_transitive :
forall (U:Type) (R:Relation U), Transitive U (Rstar U R).
Proof.
intros U R; red in |- *.
intros x y z H'; elim H'; auto with sets.
intros x0 y0 z0 H'0 H'1 H'2 H'3; apply Rstar_n with y0; auto with sets.
Qed.
Theorem Rstar_cases :
forall (U:Type) (R:Relation U) (x y:U),
Rstar U R x y -> x = y \/ (exists u : _, R x u /\ Rstar U R u y).
Proof.
intros U R x y H'; elim H'; auto with sets.
intros x0 y0 z H'0 H'1 H'2; right; exists y0; auto with sets.
Qed.
Theorem Rstar_equiv_Rstar1 :
forall (U:Type) (R:Relation U), same_relation U (Rstar U R) (Rstar1 U R).
Proof.
generalize Rstar_contains_R; intro T; red in T.
intros U R; unfold same_relation, contains in |- *.
split; intros x y H'; elim H'; auto with sets.
generalize Rstar_transitive; intro T1; red in T1.
intros x0 y0 z H'0 H'1 H'2 H'3; apply T1 with y0; auto with sets.
intros x0 y0 z H'0 H'1 H'2; apply Rstar1_n with y0; auto with sets.
Qed.
Theorem Rsym_imp_Rstarsym :
forall (U:Type) (R:Relation U), Symmetric U R -> Symmetric U (Rstar U R).
Proof.
intros U R H'; red in |- *.
intros x y H'0; elim H'0; auto with sets.
intros x0 y0 z H'1 H'2 H'3.
generalize Rstar_transitive; intro T1; red in T1.
apply T1 with y0; auto with sets.
apply Rstar_n with x0; auto with sets.
Qed.
Theorem Sstar_contains_Rstar :
forall (U:Type) (R S:Relation U),
contains U (Rstar U S) R -> contains U (Rstar U S) (Rstar U R).
Proof.
unfold contains in |- *.
intros U R S H' x y H'0; elim H'0; auto with sets.
generalize Rstar_transitive; intro T1; red in T1.
intros x0 y0 z H'1 H'2 H'3; apply T1 with y0; auto with sets.
Qed.
Theorem star_monotone :
forall (U:Type) (R S:Relation U),
contains U S R -> contains U (Rstar U S) (Rstar U R).
Proof.
intros U R S H'.
apply Sstar_contains_Rstar; auto with sets.
generalize (Rstar_contains_R U S); auto with sets.
Qed.
Theorem RstarRplus_RRstar :
forall (U:Type) (R:Relation U) (x y z:U),
Rstar U R x y -> Rplus U R y z -> exists u : _, R x u /\ Rstar U R u z.
Proof.
generalize Rstar_contains_Rplus; intro T; red in T.
generalize Rstar_transitive; intro T1; red in T1.
intros U R x y z H'; elim H'.
intros x0 H'0; elim H'0.
intros x1 y0 H'1; exists y0; auto with sets.
intros x1 y0 z0 H'1 H'2 H'3; exists y0; auto with sets.
intros x0 y0 z0 H'0 H'1 H'2 H'3; exists y0.
split; [ try assumption | idtac ].
apply T1 with z0; auto with sets.
Qed.
Theorem Lemma1 :
forall (U:Type) (R:Relation U),
Strongly_confluent U R ->
forall x b:U,
Rstar U R x b ->
forall a:U, R x a -> exists z : _, Rstar U R a z /\ R b z.
Proof.
intros U R H' x b H'0; elim H'0.
intros x0 a H'1; exists a; auto with sets.
intros x0 y z H'1 H'2 H'3 a H'4.
red in H'.
specialize H' with (x := x0) (a := a) (b := y); lapply H';
[ intro H'8; lapply H'8;
[ intro H'9; try exact H'9; clear H'8 H' | clear H'8 H' ]
| clear H' ]; auto with sets.
elim H'9.
intros t H'5; elim H'5; intros H'6 H'7; try exact H'6; clear H'5.
elim (H'3 t); auto with sets.
intros z1 H'5; elim H'5; intros H'8 H'10; try exact H'8; clear H'5.
exists z1; split; [ idtac | assumption ].
apply Rstar_n with t; auto with sets.
Qed.
|