1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(****************************************************************************)
(* *)
(* Naive Set Theory in Coq *)
(* *)
(* INRIA INRIA *)
(* Rocquencourt Sophia-Antipolis *)
(* *)
(* Coq V6.1 *)
(* *)
(* Gilles Kahn *)
(* Gerard Huet *)
(* *)
(* *)
(* *)
(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
(* to the Newton Institute for providing an exceptional work environment *)
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
Require Export Ensembles.
Require Export Constructive_sets.
Require Export Relations_1.
Require Export Relations_1_facts.
Require Export Partial_Order.
Require Export Cpo.
Require Export Powerset.
Section Sets_as_an_algebra.
Variable U : Type.
Theorem Empty_set_zero : forall X:Ensemble U, Union U (Empty_set U) X = X.
Proof.
auto 6 with sets.
Qed.
Theorem Empty_set_zero' : forall x:U, Add U (Empty_set U) x = Singleton U x.
Proof.
unfold Add at 1; auto using Empty_set_zero with sets.
Qed.
Lemma less_than_empty :
forall X:Ensemble U, Included U X (Empty_set U) -> X = Empty_set U.
Proof.
auto with sets.
Qed.
Theorem Union_commutative : forall A B:Ensemble U, Union U A B = Union U B A.
Proof.
auto with sets.
Qed.
Theorem Union_associative :
forall A B C:Ensemble U, Union U (Union U A B) C = Union U A (Union U B C).
Proof.
auto 9 with sets.
Qed.
Theorem Union_idempotent : forall A:Ensemble U, Union U A A = A.
Proof.
auto 7 with sets.
Qed.
Lemma Union_absorbs :
forall A B:Ensemble U, Included U B A -> Union U A B = A.
Proof.
auto 7 with sets.
Qed.
Theorem Couple_as_union :
forall x y:U, Union U (Singleton U x) (Singleton U y) = Couple U x y.
Proof.
intros x y; apply Extensionality_Ensembles; split; red.
intros x0 H'; elim H'; (intros x1 H'0; elim H'0; auto with sets).
intros x0 H'; elim H'; auto with sets.
Qed.
Theorem Triple_as_union :
forall x y z:U,
Union U (Union U (Singleton U x) (Singleton U y)) (Singleton U z) =
Triple U x y z.
Proof.
intros x y z; apply Extensionality_Ensembles; split; red.
intros x0 H'; elim H'.
intros x1 H'0; elim H'0; (intros x2 H'1; elim H'1; auto with sets).
intros x1 H'0; elim H'0; auto with sets.
intros x0 H'; elim H'; auto with sets.
Qed.
Theorem Triple_as_Couple : forall x y:U, Couple U x y = Triple U x x y.
Proof.
intros x y.
rewrite <- (Couple_as_union x y).
rewrite <- (Union_idempotent (Singleton U x)).
apply Triple_as_union.
Qed.
Theorem Triple_as_Couple_Singleton :
forall x y z:U, Triple U x y z = Union U (Couple U x y) (Singleton U z).
Proof.
intros x y z.
rewrite <- (Triple_as_union x y z).
rewrite <- (Couple_as_union x y); auto with sets.
Qed.
Theorem Intersection_commutative :
forall A B:Ensemble U, Intersection U A B = Intersection U B A.
Proof.
intros A B.
apply Extensionality_Ensembles.
split; red; intros x H'; elim H'; auto with sets.
Qed.
Theorem Distributivity :
forall A B C:Ensemble U,
Intersection U A (Union U B C) =
Union U (Intersection U A B) (Intersection U A C).
Proof.
intros A B C.
apply Extensionality_Ensembles.
split; red; intros x H'.
elim H'.
intros x0 H'0 H'1; generalize H'0.
elim H'1; auto with sets.
elim H'; intros x0 H'0; elim H'0; auto with sets.
Qed.
Theorem Distributivity' :
forall A B C:Ensemble U,
Union U A (Intersection U B C) =
Intersection U (Union U A B) (Union U A C).
Proof.
intros A B C.
apply Extensionality_Ensembles.
split; red; intros x H'.
elim H'; auto with sets.
intros x0 H'0; elim H'0; auto with sets.
elim H'.
intros x0 H'0; elim H'0; auto with sets.
intros x1 H'1 H'2; try exact H'2.
generalize H'1.
elim H'2; auto with sets.
Qed.
Theorem Union_add :
forall (A B:Ensemble U) (x:U), Add U (Union U A B) x = Union U A (Add U B x).
Proof.
unfold Add; auto using Union_associative with sets.
Qed.
Theorem Non_disjoint_union :
forall (X:Ensemble U) (x:U), In U X x -> Add U X x = X.
Proof.
intros X x H'; unfold Add.
apply Extensionality_Ensembles; red.
split; red; auto with sets.
intros x0 H'0; elim H'0; auto with sets.
intros t H'1; elim H'1; auto with sets.
Qed.
Theorem Non_disjoint_union' :
forall (X:Ensemble U) (x:U), ~ In U X x -> Subtract U X x = X.
Proof.
intros X x H'; unfold Subtract.
apply Extensionality_Ensembles.
split; red; auto with sets.
intros x0 H'0; elim H'0; auto with sets.
intros x0 H'0; apply Setminus_intro; auto with sets.
red; intro H'1; elim H'1.
lapply (Singleton_inv U x x0); auto with sets.
intro H'4; apply H'; rewrite H'4; auto with sets.
Qed.
Lemma singlx : forall x y:U, In U (Add U (Empty_set U) x) y -> x = y.
Proof.
intro x; rewrite (Empty_set_zero' x); auto with sets.
Qed.
Lemma incl_add :
forall (A B:Ensemble U) (x:U),
Included U A B -> Included U (Add U A x) (Add U B x).
Proof.
intros A B x H'; red; auto with sets.
intros x0 H'0.
lapply (Add_inv U A x x0); auto with sets.
intro H'1; elim H'1;
[ intro H'2; clear H'1 | intro H'2; rewrite <- H'2; clear H'1 ];
auto with sets.
Qed.
Lemma incl_add_x :
forall (A B:Ensemble U) (x:U),
~ In U A x -> Included U (Add U A x) (Add U B x) -> Included U A B.
Proof.
unfold Included.
intros A B x H' H'0 x0 H'1.
lapply (H'0 x0); auto with sets.
intro H'2; lapply (Add_inv U B x x0); auto with sets.
intro H'3; elim H'3;
[ intro H'4; try exact H'4; clear H'3 | intro H'4; clear H'3 ].
absurd (In U A x0); auto with sets.
rewrite <- H'4; auto with sets.
Qed.
Lemma Add_commutative :
forall (A:Ensemble U) (x y:U), Add U (Add U A x) y = Add U (Add U A y) x.
Proof.
intros A x y.
unfold Add.
rewrite (Union_associative A (Singleton U x) (Singleton U y)).
rewrite (Union_commutative (Singleton U x) (Singleton U y)).
rewrite <- (Union_associative A (Singleton U y) (Singleton U x));
auto with sets.
Qed.
Lemma Add_commutative' :
forall (A:Ensemble U) (x y z:U),
Add U (Add U (Add U A x) y) z = Add U (Add U (Add U A z) x) y.
Proof.
intros A x y z.
rewrite (Add_commutative (Add U A x) y z).
rewrite (Add_commutative A x z); auto with sets.
Qed.
Lemma Add_distributes :
forall (A B:Ensemble U) (x y:U),
Included U B A -> Add U (Add U A x) y = Union U (Add U A x) (Add U B y).
Proof.
intros A B x y H'; try assumption.
rewrite <- (Union_add (Add U A x) B y).
unfold Add at 4.
rewrite (Union_commutative A (Singleton U x)).
rewrite Union_associative.
rewrite (Union_absorbs A B H').
rewrite (Union_commutative (Singleton U x) A).
auto with sets.
Qed.
Lemma setcover_intro :
forall (U:Type) (A x y:Ensemble U),
Strict_Included U x y ->
~ (exists z : _, Strict_Included U x z /\ Strict_Included U z y) ->
covers (Ensemble U) (Power_set_PO U A) y x.
Proof.
intros; apply Definition_of_covers; auto with sets.
Qed.
End Sets_as_an_algebra.
Hint Resolve Empty_set_zero Empty_set_zero' Union_associative Union_add
singlx incl_add: sets v62.
|