1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(****************************************************************************)
(* *)
(* Naive Set Theory in Coq *)
(* *)
(* INRIA INRIA *)
(* Rocquencourt Sophia-Antipolis *)
(* *)
(* Coq V6.1 *)
(* *)
(* Gilles Kahn *)
(* Gerard Huet *)
(* *)
(* *)
(* *)
(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
(* to the Newton Institute for providing an exceptional work environment *)
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
(*i $Id: Powerset.v 8642 2006-03-17 10:09:02Z notin $ i*)
Require Export Ensembles.
Require Export Relations_1.
Require Export Relations_1_facts.
Require Export Partial_Order.
Require Export Cpo.
Section The_power_set_partial_order.
Variable U : Type.
Inductive Power_set (A:Ensemble U) : Ensemble (Ensemble U) :=
Definition_of_Power_set :
forall X:Ensemble U, Included U X A -> In (Ensemble U) (Power_set A) X.
Hint Resolve Definition_of_Power_set.
Theorem Empty_set_minimal : forall X:Ensemble U, Included U (Empty_set U) X.
intro X; red in |- *.
intros x H'; elim H'.
Qed.
Hint Resolve Empty_set_minimal.
Theorem Power_set_Inhabited :
forall X:Ensemble U, Inhabited (Ensemble U) (Power_set X).
intro X.
apply Inhabited_intro with (Empty_set U); auto with sets.
Qed.
Hint Resolve Power_set_Inhabited.
Theorem Inclusion_is_an_order : Order (Ensemble U) (Included U).
auto 6 with sets.
Qed.
Hint Resolve Inclusion_is_an_order.
Theorem Inclusion_is_transitive : Transitive (Ensemble U) (Included U).
elim Inclusion_is_an_order; auto with sets.
Qed.
Hint Resolve Inclusion_is_transitive.
Definition Power_set_PO : Ensemble U -> PO (Ensemble U).
intro A; try assumption.
apply Definition_of_PO with (Power_set A) (Included U); auto with sets.
Defined.
Hint Unfold Power_set_PO.
Theorem Strict_Rel_is_Strict_Included :
same_relation (Ensemble U) (Strict_Included U)
(Strict_Rel_of (Ensemble U) (Power_set_PO (Full_set U))).
auto with sets.
Qed.
Hint Resolve Strict_Rel_Transitive Strict_Rel_is_Strict_Included.
Lemma Strict_inclusion_is_transitive_with_inclusion :
forall x y z:Ensemble U,
Strict_Included U x y -> Included U y z -> Strict_Included U x z.
intros x y z H' H'0; try assumption.
elim Strict_Rel_is_Strict_Included.
unfold contains in |- *.
intros H'1 H'2; try assumption.
apply H'1.
apply Strict_Rel_Transitive_with_Rel with (y := y); auto with sets.
Qed.
Lemma Strict_inclusion_is_transitive_with_inclusion_left :
forall x y z:Ensemble U,
Included U x y -> Strict_Included U y z -> Strict_Included U x z.
intros x y z H' H'0; try assumption.
elim Strict_Rel_is_Strict_Included.
unfold contains in |- *.
intros H'1 H'2; try assumption.
apply H'1.
apply Strict_Rel_Transitive_with_Rel_left with (y := y); auto with sets.
Qed.
Lemma Strict_inclusion_is_transitive :
Transitive (Ensemble U) (Strict_Included U).
apply cong_transitive_same_relation with
(R := Strict_Rel_of (Ensemble U) (Power_set_PO (Full_set U)));
auto with sets.
Qed.
Theorem Empty_set_is_Bottom :
forall A:Ensemble U, Bottom (Ensemble U) (Power_set_PO A) (Empty_set U).
intro A; apply Bottom_definition; simpl in |- *; auto with sets.
Qed.
Hint Resolve Empty_set_is_Bottom.
Theorem Union_minimal :
forall a b X:Ensemble U,
Included U a X -> Included U b X -> Included U (Union U a b) X.
intros a b X H' H'0; red in |- *.
intros x H'1; elim H'1; auto with sets.
Qed.
Hint Resolve Union_minimal.
Theorem Intersection_maximal :
forall a b X:Ensemble U,
Included U X a -> Included U X b -> Included U X (Intersection U a b).
auto with sets.
Qed.
Theorem Union_increases_l : forall a b:Ensemble U, Included U a (Union U a b).
auto with sets.
Qed.
Theorem Union_increases_r : forall a b:Ensemble U, Included U b (Union U a b).
auto with sets.
Qed.
Theorem Intersection_decreases_l :
forall a b:Ensemble U, Included U (Intersection U a b) a.
intros a b; red in |- *.
intros x H'; elim H'; auto with sets.
Qed.
Theorem Intersection_decreases_r :
forall a b:Ensemble U, Included U (Intersection U a b) b.
intros a b; red in |- *.
intros x H'; elim H'; auto with sets.
Qed.
Hint Resolve Union_increases_l Union_increases_r Intersection_decreases_l
Intersection_decreases_r.
Theorem Union_is_Lub :
forall A a b:Ensemble U,
Included U a A ->
Included U b A ->
Lub (Ensemble U) (Power_set_PO A) (Couple (Ensemble U) a b) (Union U a b).
intros A a b H' H'0.
apply Lub_definition; simpl in |- *.
apply Upper_Bound_definition; simpl in |- *; auto with sets.
intros y H'1; elim H'1; auto with sets.
intros y H'1; elim H'1; simpl in |- *; auto with sets.
Qed.
Theorem Intersection_is_Glb :
forall A a b:Ensemble U,
Included U a A ->
Included U b A ->
Glb (Ensemble U) (Power_set_PO A) (Couple (Ensemble U) a b)
(Intersection U a b).
intros A a b H' H'0.
apply Glb_definition; simpl in |- *.
apply Lower_Bound_definition; simpl in |- *; auto with sets.
apply Definition_of_Power_set.
generalize Inclusion_is_transitive; intro IT; red in IT; apply IT with a;
auto with sets.
intros y H'1; elim H'1; auto with sets.
intros y H'1; elim H'1; simpl in |- *; auto with sets.
Qed.
End The_power_set_partial_order.
Hint Resolve Empty_set_minimal: sets v62.
Hint Resolve Power_set_Inhabited: sets v62.
Hint Resolve Inclusion_is_an_order: sets v62.
Hint Resolve Inclusion_is_transitive: sets v62.
Hint Resolve Union_minimal: sets v62.
Hint Resolve Union_increases_l: sets v62.
Hint Resolve Union_increases_r: sets v62.
Hint Resolve Intersection_decreases_l: sets v62.
Hint Resolve Intersection_decreases_r: sets v62.
Hint Resolve Empty_set_is_Bottom: sets v62.
Hint Resolve Strict_inclusion_is_transitive: sets v62.
|