1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(****************************************************************************)
(* *)
(* Naive Set Theory in Coq *)
(* *)
(* INRIA INRIA *)
(* Rocquencourt Sophia-Antipolis *)
(* *)
(* Coq V6.1 *)
(* *)
(* Gilles Kahn *)
(* Gerard Huet *)
(* *)
(* *)
(* *)
(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
(* to the Newton Institute for providing an exceptional work environment *)
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
(*i $Id$ i*)
Require Export Finite_sets.
Require Export Constructive_sets.
Require Export Classical_Type.
Require Export Classical_sets.
Require Export Powerset.
Require Export Powerset_facts.
Require Export Powerset_Classical_facts.
Require Export Gt.
Require Export Lt.
Require Export Le.
Require Export Finite_sets_facts.
Require Export Image.
Section Approx.
Variable U : Type.
Inductive Approximant (A X:Ensemble U) : Prop :=
Defn_of_Approximant : Finite U X -> Included U X A -> Approximant A X.
End Approx.
Hint Resolve Defn_of_Approximant.
Section Infinite_sets.
Variable U : Type.
Lemma make_new_approximant :
forall A X:Ensemble U,
~ Finite U A -> Approximant U A X -> Inhabited U (Setminus U A X).
Proof.
intros A X H' H'0.
elim H'0; intros H'1 H'2.
apply Strict_super_set_contains_new_element; auto with sets.
red in |- *; intro H'3; apply H'.
rewrite <- H'3; auto with sets.
Qed.
Lemma approximants_grow :
forall A X:Ensemble U,
~ Finite U A ->
forall n:nat,
cardinal U X n ->
Included U X A -> exists Y : _, cardinal U Y (S n) /\ Included U Y A.
Proof.
intros A X H' n H'0; elim H'0; auto with sets.
intro H'1.
cut (Inhabited U (Setminus U A (Empty_set U))).
intro H'2; elim H'2.
intros x H'3.
exists (Add U (Empty_set U) x); auto with sets.
split.
apply card_add; auto with sets.
cut (In U A x).
intro H'4; red in |- *; auto with sets.
intros x0 H'5; elim H'5; auto with sets.
intros x1 H'6; elim H'6; auto with sets.
elim H'3; auto with sets.
apply make_new_approximant; auto with sets.
intros A0 n0 H'1 H'2 x H'3 H'5.
lapply H'2; [ intro H'6; elim H'6; clear H'2 | clear H'2 ]; auto with sets.
intros x0 H'2; try assumption.
elim H'2; intros H'7 H'8; try exact H'8; clear H'2.
elim (make_new_approximant A x0); auto with sets.
intros x1 H'2; try assumption.
exists (Add U x0 x1); auto with sets.
split.
apply card_add; auto with sets.
elim H'2; auto with sets.
red in |- *.
intros x2 H'9; elim H'9; auto with sets.
intros x3 H'10; elim H'10; auto with sets.
elim H'2; auto with sets.
auto with sets.
apply Defn_of_Approximant; auto with sets.
apply cardinal_finite with (n := S n0); auto with sets.
Qed.
Lemma approximants_grow' :
forall A X:Ensemble U,
~ Finite U A ->
forall n:nat,
cardinal U X n ->
Approximant U A X ->
exists Y : _, cardinal U Y (S n) /\ Approximant U A Y.
Proof.
intros A X H' n H'0 H'1; try assumption.
elim H'1.
intros H'2 H'3.
elimtype (exists Y : _, cardinal U Y (S n) /\ Included U Y A).
intros x H'4; elim H'4; intros H'5 H'6; try exact H'5; clear H'4.
exists x; auto with sets.
split; [ auto with sets | idtac ].
apply Defn_of_Approximant; auto with sets.
apply cardinal_finite with (n := S n); auto with sets.
apply approximants_grow with (X := X); auto with sets.
Qed.
Lemma approximant_can_be_any_size :
forall A X:Ensemble U,
~ Finite U A ->
forall n:nat, exists Y : _, cardinal U Y n /\ Approximant U A Y.
Proof.
intros A H' H'0 n; elim n.
exists (Empty_set U); auto with sets.
intros n0 H'1; elim H'1.
intros x H'2.
apply approximants_grow' with (X := x); tauto.
Qed.
Variable V : Type.
Theorem Image_set_continuous :
forall (A:Ensemble U) (f:U -> V) (X:Ensemble V),
Finite V X ->
Included V X (Im U V A f) ->
exists n : _,
(exists Y : _, (cardinal U Y n /\ Included U Y A) /\ Im U V Y f = X).
Proof.
intros A f X H'; elim H'.
intro H'0; exists 0.
exists (Empty_set U); auto with sets.
intros A0 H'0 H'1 x H'2 H'3; try assumption.
lapply H'1;
[ intro H'4; elim H'4; intros n E; elim E; clear H'4 H'1 | clear H'1 ];
auto with sets.
intros x0 H'1; try assumption.
exists (S n); try assumption.
elim H'1; intros H'4 H'5; elim H'4; intros H'6 H'7; try exact H'6;
clear H'4 H'1.
clear E.
generalize H'2.
rewrite <- H'5.
intro H'1; try assumption.
red in H'3.
generalize (H'3 x).
intro H'4; lapply H'4; [ intro H'8; try exact H'8; clear H'4 | clear H'4 ];
auto with sets.
specialize Im_inv with (U := U) (V := V) (X := A) (f := f) (y := x);
intro H'11; lapply H'11; [ intro H'13; elim H'11; clear H'11 | clear H'11 ];
auto with sets.
intros x1 H'4; try assumption.
apply ex_intro with (x := Add U x0 x1).
split; [ split; [ try assumption | idtac ] | idtac ].
apply card_add; auto with sets.
red in |- *; intro H'9; try exact H'9.
apply H'1.
elim H'4; intros H'10 H'11; rewrite <- H'11; clear H'4; auto with sets.
elim H'4; intros H'9 H'10; try exact H'9; clear H'4; auto with sets.
red in |- *; auto with sets.
intros x2 H'4; elim H'4; auto with sets.
intros x3 H'11; elim H'11; auto with sets.
elim H'4; intros H'9 H'10; rewrite <- H'10; clear H'4; auto with sets.
apply Im_add; auto with sets.
Qed.
Theorem Image_set_continuous' :
forall (A:Ensemble U) (f:U -> V) (X:Ensemble V),
Approximant V (Im U V A f) X ->
exists Y : _, Approximant U A Y /\ Im U V Y f = X.
Proof.
intros A f X H'; try assumption.
cut
(exists n : _,
(exists Y : _, (cardinal U Y n /\ Included U Y A) /\ Im U V Y f = X)).
intro H'0; elim H'0; intros n E; elim E; clear H'0.
intros x H'0; try assumption.
elim H'0; intros H'1 H'2; elim H'1; intros H'3 H'4; try exact H'3;
clear H'1 H'0; auto with sets.
exists x.
split; [ idtac | try assumption ].
apply Defn_of_Approximant; auto with sets.
apply cardinal_finite with (n := n); auto with sets.
apply Image_set_continuous; auto with sets.
elim H'; auto with sets.
elim H'; auto with sets.
Qed.
Theorem Pigeonhole_bis :
forall (A:Ensemble U) (f:U -> V),
~ Finite U A -> Finite V (Im U V A f) -> ~ injective U V f.
Proof.
intros A f H'0 H'1; try assumption.
elim (Image_set_continuous' A f (Im U V A f)); auto with sets.
intros x H'2; elim H'2; intros H'3 H'4; try exact H'3; clear H'2.
elim (make_new_approximant A x); auto with sets.
intros x0 H'2; elim H'2.
intros H'5 H'6.
elim (finite_cardinal V (Im U V A f)); auto with sets.
intros n E.
elim (finite_cardinal U x); auto with sets.
intros n0 E0.
apply Pigeonhole with (A := Add U x x0) (n := S n0) (n' := n).
apply card_add; auto with sets.
rewrite (Im_add U V x x0 f); auto with sets.
cut (In V (Im U V x f) (f x0)).
intro H'8.
rewrite (Non_disjoint_union V (Im U V x f) (f x0)); auto with sets.
rewrite H'4; auto with sets.
elim (Extension V (Im U V x f) (Im U V A f)); auto with sets.
apply le_lt_n_Sm.
apply cardinal_decreases with (U := U) (V := V) (A := x) (f := f);
auto with sets.
rewrite H'4; auto with sets.
elim H'3; auto with sets.
Qed.
Theorem Pigeonhole_ter :
forall (A:Ensemble U) (f:U -> V) (n:nat),
injective U V f -> Finite V (Im U V A f) -> Finite U A.
Proof.
intros A f H' H'0 H'1.
apply NNPP.
red in |- *; intro H'2.
elim (Pigeonhole_bis A f); auto with sets.
Qed.
End Infinite_sets.
|