1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(****************************************************************************)
(* *)
(* Naive Set Theory in Coq *)
(* *)
(* INRIA INRIA *)
(* Rocquencourt Sophia-Antipolis *)
(* *)
(* Coq V6.1 *)
(* *)
(* Gilles Kahn *)
(* Gerard Huet *)
(* *)
(* *)
(* *)
(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
(* to the Newton Institute for providing an exceptional work environment *)
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
(*i $Id$ i*)
Require Export Ensembles.
Section Ensembles_facts.
Variable U : Type.
Lemma Extension : forall B C:Ensemble U, B = C -> Same_set U B C.
Proof.
intros B C H'; rewrite H'; auto with sets.
Qed.
Lemma Noone_in_empty : forall x:U, ~ In U (Empty_set U) x.
Proof.
red in |- *; destruct 1.
Qed.
Lemma Included_Empty : forall A:Ensemble U, Included U (Empty_set U) A.
Proof.
intro; red in |- *.
intros x H; elim (Noone_in_empty x); auto with sets.
Qed.
Lemma Add_intro1 :
forall (A:Ensemble U) (x y:U), In U A y -> In U (Add U A x) y.
Proof.
unfold Add at 1 in |- *; auto with sets.
Qed.
Lemma Add_intro2 : forall (A:Ensemble U) (x:U), In U (Add U A x) x.
Proof.
unfold Add at 1 in |- *; auto with sets.
Qed.
Lemma Inhabited_add : forall (A:Ensemble U) (x:U), Inhabited U (Add U A x).
Proof.
intros A x.
apply Inhabited_intro with (x := x); auto using Add_intro2 with sets.
Qed.
Lemma Inhabited_not_empty :
forall X:Ensemble U, Inhabited U X -> X <> Empty_set U.
Proof.
intros X H'; elim H'.
intros x H'0; red in |- *; intro H'1.
absurd (In U X x); auto with sets.
rewrite H'1; auto using Noone_in_empty with sets.
Qed.
Lemma Add_not_Empty : forall (A:Ensemble U) (x:U), Add U A x <> Empty_set U.
Proof.
intros A x; apply Inhabited_not_empty; apply Inhabited_add.
Qed.
Lemma not_Empty_Add : forall (A:Ensemble U) (x:U), Empty_set U <> Add U A x.
Proof.
intros; red in |- *; intro H; generalize (Add_not_Empty A x); auto with sets.
Qed.
Lemma Singleton_inv : forall x y:U, In U (Singleton U x) y -> x = y.
Proof.
intros x y H'; elim H'; trivial with sets.
Qed.
Lemma Singleton_intro : forall x y:U, x = y -> In U (Singleton U x) y.
Proof.
intros x y H'; rewrite H'; trivial with sets.
Qed.
Lemma Union_inv :
forall (B C:Ensemble U) (x:U), In U (Union U B C) x -> In U B x \/ In U C x.
Proof.
intros B C x H'; elim H'; auto with sets.
Qed.
Lemma Add_inv :
forall (A:Ensemble U) (x y:U), In U (Add U A x) y -> In U A y \/ x = y.
Proof.
intros A x y H'; induction H'.
left; assumption.
right; apply Singleton_inv; assumption.
Qed.
Lemma Intersection_inv :
forall (B C:Ensemble U) (x:U),
In U (Intersection U B C) x -> In U B x /\ In U C x.
Proof.
intros B C x H'; elim H'; auto with sets.
Qed.
Lemma Couple_inv : forall x y z:U, In U (Couple U x y) z -> z = x \/ z = y.
Proof.
intros x y z H'; elim H'; auto with sets.
Qed.
Lemma Setminus_intro :
forall (A B:Ensemble U) (x:U),
In U A x -> ~ In U B x -> In U (Setminus U A B) x.
Proof.
unfold Setminus at 1 in |- *; red in |- *; auto with sets.
Qed.
Lemma Strict_Included_intro :
forall X Y:Ensemble U, Included U X Y /\ X <> Y -> Strict_Included U X Y.
Proof.
auto with sets.
Qed.
Lemma Strict_Included_strict : forall X:Ensemble U, ~ Strict_Included U X X.
Proof.
intro X; red in |- *; intro H'; elim H'.
intros H'0 H'1; elim H'1; auto with sets.
Qed.
End Ensembles_facts.
Hint Resolve Singleton_inv Singleton_intro Add_intro1 Add_intro2
Intersection_inv Couple_inv Setminus_intro Strict_Included_intro
Strict_Included_strict Noone_in_empty Inhabited_not_empty Add_not_Empty
not_Empty_Add Inhabited_add Included_Empty: sets v62.
|