1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Setoid_tac.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
Require Export Relation_Definitions.
Set Implicit Arguments.
(** * Definitions of [Relation_Class] and n-ary [Morphism_Theory] *)
(* X will be used to distinguish covariant arguments whose type is an *)
(* Asymmetric* relation from contravariant arguments of the same type *)
Inductive X_Relation_Class (X: Type) : Type :=
SymmetricReflexive :
forall A Aeq, symmetric A Aeq -> reflexive _ Aeq -> X_Relation_Class X
| AsymmetricReflexive : X -> forall A Aeq, reflexive A Aeq -> X_Relation_Class X
| SymmetricAreflexive : forall A Aeq, symmetric A Aeq -> X_Relation_Class X
| AsymmetricAreflexive : X -> forall A (Aeq : relation A), X_Relation_Class X
| Leibniz : Type -> X_Relation_Class X.
Inductive variance : Set :=
Covariant
| Contravariant.
Definition Argument_Class := X_Relation_Class variance.
Definition Relation_Class := X_Relation_Class unit.
Inductive Reflexive_Relation_Class : Type :=
RSymmetric :
forall A Aeq, symmetric A Aeq -> reflexive _ Aeq -> Reflexive_Relation_Class
| RAsymmetric :
forall A Aeq, reflexive A Aeq -> Reflexive_Relation_Class
| RLeibniz : Type -> Reflexive_Relation_Class.
Inductive Areflexive_Relation_Class : Type :=
| ASymmetric : forall A Aeq, symmetric A Aeq -> Areflexive_Relation_Class
| AAsymmetric : forall A (Aeq : relation A), Areflexive_Relation_Class.
Implicit Type Hole Out: Relation_Class.
Definition relation_class_of_argument_class : Argument_Class -> Relation_Class.
destruct 1.
exact (SymmetricReflexive _ s r).
exact (AsymmetricReflexive tt r).
exact (SymmetricAreflexive _ s).
exact (AsymmetricAreflexive tt Aeq).
exact (Leibniz _ T).
Defined.
Definition carrier_of_relation_class : forall X, X_Relation_Class X -> Type.
destruct 1.
exact A.
exact A.
exact A.
exact A.
exact T.
Defined.
Definition relation_of_relation_class :
forall X R, @carrier_of_relation_class X R -> carrier_of_relation_class R -> Prop.
destruct R.
exact Aeq.
exact Aeq.
exact Aeq.
exact Aeq.
exact (@eq T).
Defined.
Lemma about_carrier_of_relation_class_and_relation_class_of_argument_class :
forall R,
carrier_of_relation_class (relation_class_of_argument_class R) =
carrier_of_relation_class R.
destruct R; reflexivity.
Defined.
Inductive nelistT (A : Type) : Type :=
singl : A -> nelistT A
| necons : A -> nelistT A -> nelistT A.
Definition Arguments := nelistT Argument_Class.
Implicit Type In: Arguments.
Definition function_type_of_morphism_signature :
Arguments -> Relation_Class -> Type.
intros In Out.
induction In.
exact (carrier_of_relation_class a -> carrier_of_relation_class Out).
exact (carrier_of_relation_class a -> IHIn).
Defined.
Definition make_compatibility_goal_aux:
forall In Out
(f g: function_type_of_morphism_signature In Out), Prop.
intros; induction In; simpl in f, g.
induction a; simpl in f, g.
exact (forall x1 x2, Aeq x1 x2 -> relation_of_relation_class Out (f x1) (g x2)).
destruct x.
exact (forall x1 x2, Aeq x1 x2 -> relation_of_relation_class Out (f x1) (g x2)).
exact (forall x1 x2, Aeq x2 x1 -> relation_of_relation_class Out (f x1) (g x2)).
exact (forall x1 x2, Aeq x1 x2 -> relation_of_relation_class Out (f x1) (g x2)).
destruct x.
exact (forall x1 x2, Aeq x1 x2 -> relation_of_relation_class Out (f x1) (g x2)).
exact (forall x1 x2, Aeq x2 x1 -> relation_of_relation_class Out (f x1) (g x2)).
exact (forall x, relation_of_relation_class Out (f x) (g x)).
induction a; simpl in f, g.
exact (forall x1 x2, Aeq x1 x2 -> IHIn (f x1) (g x2)).
destruct x.
exact (forall x1 x2, Aeq x1 x2 -> IHIn (f x1) (g x2)).
exact (forall x1 x2, Aeq x2 x1 -> IHIn (f x1) (g x2)).
exact (forall x1 x2, Aeq x1 x2 -> IHIn (f x1) (g x2)).
destruct x.
exact (forall x1 x2, Aeq x1 x2 -> IHIn (f x1) (g x2)).
exact (forall x1 x2, Aeq x2 x1 -> IHIn (f x1) (g x2)).
exact (forall x, IHIn (f x) (g x)).
Defined.
Definition make_compatibility_goal :=
(fun In Out f => make_compatibility_goal_aux In Out f f).
Record Morphism_Theory In Out : Type :=
{ Function : function_type_of_morphism_signature In Out;
Compat : make_compatibility_goal In Out Function }.
(** The [iff] relation class *)
Definition Iff_Relation_Class : Relation_Class.
eapply (@SymmetricReflexive unit _ iff).
exact iff_sym.
exact iff_refl.
Defined.
(** The [impl] relation class *)
Definition impl (A B: Prop) := A -> B.
Theorem impl_refl: reflexive _ impl.
Proof.
hnf; unfold impl; tauto.
Qed.
Definition Impl_Relation_Class : Relation_Class.
eapply (@AsymmetricReflexive unit tt _ impl).
exact impl_refl.
Defined.
(** Every function is a morphism from Leibniz+ to Leibniz *)
Definition list_of_Leibniz_of_list_of_types: nelistT Type -> Arguments.
induction 1.
exact (singl (Leibniz _ a)).
exact (necons (Leibniz _ a) IHX).
Defined.
Definition morphism_theory_of_function :
forall (In: nelistT Type) (Out: Type),
let In' := list_of_Leibniz_of_list_of_types In in
let Out' := Leibniz _ Out in
function_type_of_morphism_signature In' Out' ->
Morphism_Theory In' Out'.
intros.
exists X.
induction In; unfold make_compatibility_goal; simpl.
reflexivity.
intro; apply (IHIn (X x)).
Defined.
(** Every predicate is a morphism from Leibniz+ to Iff_Relation_Class *)
Definition morphism_theory_of_predicate :
forall (In: nelistT Type),
let In' := list_of_Leibniz_of_list_of_types In in
function_type_of_morphism_signature In' Iff_Relation_Class ->
Morphism_Theory In' Iff_Relation_Class.
intros.
exists X.
induction In; unfold make_compatibility_goal; simpl.
intro; apply iff_refl.
intro; apply (IHIn (X x)).
Defined.
(** * Utility functions to prove that every transitive relation is a morphism *)
Definition equality_morphism_of_symmetric_areflexive_transitive_relation:
forall (A: Type)(Aeq: relation A)(sym: symmetric _ Aeq)(trans: transitive _ Aeq),
let ASetoidClass := SymmetricAreflexive _ sym in
(Morphism_Theory (necons ASetoidClass (singl ASetoidClass)) Iff_Relation_Class).
intros.
exists Aeq.
unfold make_compatibility_goal; simpl; split; eauto.
Defined.
Definition equality_morphism_of_symmetric_reflexive_transitive_relation:
forall (A: Type)(Aeq: relation A)(refl: reflexive _ Aeq)(sym: symmetric _ Aeq)
(trans: transitive _ Aeq), let ASetoidClass := SymmetricReflexive _ sym refl in
(Morphism_Theory (necons ASetoidClass (singl ASetoidClass)) Iff_Relation_Class).
intros.
exists Aeq.
unfold make_compatibility_goal; simpl; split; eauto.
Defined.
Definition equality_morphism_of_asymmetric_areflexive_transitive_relation:
forall (A: Type)(Aeq: relation A)(trans: transitive _ Aeq),
let ASetoidClass1 := AsymmetricAreflexive Contravariant Aeq in
let ASetoidClass2 := AsymmetricAreflexive Covariant Aeq in
(Morphism_Theory (necons ASetoidClass1 (singl ASetoidClass2)) Impl_Relation_Class).
intros.
exists Aeq.
unfold make_compatibility_goal; simpl; unfold impl; eauto.
Defined.
Definition equality_morphism_of_asymmetric_reflexive_transitive_relation:
forall (A: Type)(Aeq: relation A)(refl: reflexive _ Aeq)(trans: transitive _ Aeq),
let ASetoidClass1 := AsymmetricReflexive Contravariant refl in
let ASetoidClass2 := AsymmetricReflexive Covariant refl in
(Morphism_Theory (necons ASetoidClass1 (singl ASetoidClass2)) Impl_Relation_Class).
intros.
exists Aeq.
unfold make_compatibility_goal; simpl; unfold impl; eauto.
Defined.
(** * The CIC part of the reflexive tactic ([setoid_rewrite]) *)
Inductive rewrite_direction : Type :=
| Left2Right
| Right2Left.
Implicit Type dir: rewrite_direction.
Definition variance_of_argument_class : Argument_Class -> option variance.
destruct 1.
exact None.
exact (Some v).
exact None.
exact (Some v).
exact None.
Defined.
Definition opposite_direction :=
fun dir =>
match dir with
| Left2Right => Right2Left
| Right2Left => Left2Right
end.
Lemma opposite_direction_idempotent:
forall dir, (opposite_direction (opposite_direction dir)) = dir.
Proof.
destruct dir; reflexivity.
Qed.
Inductive check_if_variance_is_respected :
option variance -> rewrite_direction -> rewrite_direction -> Prop :=
| MSNone : forall dir dir', check_if_variance_is_respected None dir dir'
| MSCovariant : forall dir, check_if_variance_is_respected (Some Covariant) dir dir
| MSContravariant :
forall dir,
check_if_variance_is_respected (Some Contravariant) dir (opposite_direction dir).
Definition relation_class_of_reflexive_relation_class:
Reflexive_Relation_Class -> Relation_Class.
induction 1.
exact (SymmetricReflexive _ s r).
exact (AsymmetricReflexive tt r).
exact (Leibniz _ T).
Defined.
Definition relation_class_of_areflexive_relation_class:
Areflexive_Relation_Class -> Relation_Class.
induction 1.
exact (SymmetricAreflexive _ s).
exact (AsymmetricAreflexive tt Aeq).
Defined.
Definition carrier_of_reflexive_relation_class :=
fun R => carrier_of_relation_class (relation_class_of_reflexive_relation_class R).
Definition carrier_of_areflexive_relation_class :=
fun R => carrier_of_relation_class (relation_class_of_areflexive_relation_class R).
Definition relation_of_areflexive_relation_class :=
fun R => relation_of_relation_class (relation_class_of_areflexive_relation_class R).
Inductive Morphism_Context Hole dir : Relation_Class -> rewrite_direction -> Type :=
| App :
forall In Out dir',
Morphism_Theory In Out -> Morphism_Context_List Hole dir dir' In ->
Morphism_Context Hole dir Out dir'
| ToReplace : Morphism_Context Hole dir Hole dir
| ToKeep :
forall S dir',
carrier_of_reflexive_relation_class S ->
Morphism_Context Hole dir (relation_class_of_reflexive_relation_class S) dir'
| ProperElementToKeep :
forall S dir' (x: carrier_of_areflexive_relation_class S),
relation_of_areflexive_relation_class S x x ->
Morphism_Context Hole dir (relation_class_of_areflexive_relation_class S) dir'
with Morphism_Context_List Hole dir :
rewrite_direction -> Arguments -> Type
:=
fcl_singl :
forall S dir' dir'',
check_if_variance_is_respected (variance_of_argument_class S) dir' dir'' ->
Morphism_Context Hole dir (relation_class_of_argument_class S) dir' ->
Morphism_Context_List Hole dir dir'' (singl S)
| fcl_cons :
forall S L dir' dir'',
check_if_variance_is_respected (variance_of_argument_class S) dir' dir'' ->
Morphism_Context Hole dir (relation_class_of_argument_class S) dir' ->
Morphism_Context_List Hole dir dir'' L ->
Morphism_Context_List Hole dir dir'' (necons S L).
Scheme Morphism_Context_rect2 := Induction for Morphism_Context Sort Type
with Morphism_Context_List_rect2 := Induction for Morphism_Context_List Sort Type.
Definition product_of_arguments : Arguments -> Type.
induction 1.
exact (carrier_of_relation_class a).
exact (prod (carrier_of_relation_class a) IHX).
Defined.
Definition get_rewrite_direction: rewrite_direction -> Argument_Class -> rewrite_direction.
intros dir R.
destruct (variance_of_argument_class R).
destruct v.
exact dir. (* covariant *)
exact (opposite_direction dir). (* contravariant *)
exact dir. (* symmetric relation *)
Defined.
Definition directed_relation_of_relation_class:
forall dir (R: Relation_Class),
carrier_of_relation_class R -> carrier_of_relation_class R -> Prop.
destruct 1.
exact (@relation_of_relation_class unit).
intros; exact (relation_of_relation_class _ X0 X).
Defined.
Definition directed_relation_of_argument_class:
forall dir (R: Argument_Class),
carrier_of_relation_class R -> carrier_of_relation_class R -> Prop.
intros dir R.
rewrite <-
(about_carrier_of_relation_class_and_relation_class_of_argument_class R).
exact (directed_relation_of_relation_class dir (relation_class_of_argument_class R)).
Defined.
Definition relation_of_product_of_arguments:
forall dir In,
product_of_arguments In -> product_of_arguments In -> Prop.
induction In.
simpl.
exact (directed_relation_of_argument_class (get_rewrite_direction dir a) a).
simpl; intros.
destruct X; destruct X0.
apply and.
exact
(directed_relation_of_argument_class (get_rewrite_direction dir a) a c c0).
exact (IHIn p p0).
Defined.
Definition apply_morphism:
forall In Out (m: function_type_of_morphism_signature In Out)
(args: product_of_arguments In), carrier_of_relation_class Out.
intros.
induction In.
exact (m args).
simpl in m, args.
destruct args.
exact (IHIn (m c) p).
Defined.
Theorem apply_morphism_compatibility_Right2Left:
forall In Out (m1 m2: function_type_of_morphism_signature In Out)
(args1 args2: product_of_arguments In),
make_compatibility_goal_aux _ _ m1 m2 ->
relation_of_product_of_arguments Right2Left _ args1 args2 ->
directed_relation_of_relation_class Right2Left _
(apply_morphism _ _ m2 args1)
(apply_morphism _ _ m1 args2).
induction In; intros.
simpl in m1, m2, args1, args2, H0 |- *.
destruct a; simpl in H; hnf in H0.
apply H; exact H0.
destruct v; simpl in H0; apply H; exact H0.
apply H; exact H0.
destruct v; simpl in H0; apply H; exact H0.
rewrite H0; apply H; exact H0.
simpl in m1, m2, args1, args2, H0 |- *.
destruct args1; destruct args2; simpl.
destruct H0.
simpl in H.
destruct a; simpl in H.
apply IHIn.
apply H; exact H0.
exact H1.
destruct v.
apply IHIn.
apply H; exact H0.
exact H1.
apply IHIn.
apply H; exact H0.
exact H1.
apply IHIn.
apply H; exact H0.
exact H1.
destruct v.
apply IHIn.
apply H; exact H0.
exact H1.
apply IHIn.
apply H; exact H0.
exact H1.
rewrite H0; apply IHIn.
apply H.
exact H1.
Qed.
Theorem apply_morphism_compatibility_Left2Right:
forall In Out (m1 m2: function_type_of_morphism_signature In Out)
(args1 args2: product_of_arguments In),
make_compatibility_goal_aux _ _ m1 m2 ->
relation_of_product_of_arguments Left2Right _ args1 args2 ->
directed_relation_of_relation_class Left2Right _
(apply_morphism _ _ m1 args1)
(apply_morphism _ _ m2 args2).
Proof.
induction In; intros.
simpl in m1, m2, args1, args2, H0 |- *.
destruct a; simpl in H; hnf in H0.
apply H; exact H0.
destruct v; simpl in H0; apply H; exact H0.
apply H; exact H0.
destruct v; simpl in H0; apply H; exact H0.
rewrite H0; apply H; exact H0.
simpl in m1, m2, args1, args2, H0 |- *.
destruct args1; destruct args2; simpl.
destruct H0.
simpl in H.
destruct a; simpl in H.
apply IHIn.
apply H; exact H0.
exact H1.
destruct v.
apply IHIn.
apply H; exact H0.
exact H1.
apply IHIn.
apply H; exact H0.
exact H1.
apply IHIn.
apply H; exact H0.
exact H1.
apply IHIn.
destruct v; simpl in H, H0; apply H; exact H0.
exact H1.
rewrite H0; apply IHIn.
apply H.
exact H1.
Qed.
Definition interp :
forall Hole dir Out dir', carrier_of_relation_class Hole ->
Morphism_Context Hole dir Out dir' -> carrier_of_relation_class Out.
intros Hole dir Out dir' H t.
elim t using
(@Morphism_Context_rect2 Hole dir (fun S _ _ => carrier_of_relation_class S)
(fun _ L fcl => product_of_arguments L));
intros.
exact (apply_morphism _ _ (Function m) X).
exact H.
exact c.
exact x.
simpl;
rewrite <-
(about_carrier_of_relation_class_and_relation_class_of_argument_class S);
exact X.
split.
rewrite <-
(about_carrier_of_relation_class_and_relation_class_of_argument_class S);
exact X.
exact X0.
Defined.
(* CSC: interp and interp_relation_class_list should be mutually defined, since
the proof term of each one contains the proof term of the other one. However
I cannot do that interactively (I should write the Fix by hand) *)
Definition interp_relation_class_list :
forall Hole dir dir' (L: Arguments), carrier_of_relation_class Hole ->
Morphism_Context_List Hole dir dir' L -> product_of_arguments L.
intros Hole dir dir' L H t.
elim t using
(@Morphism_Context_List_rect2 Hole dir (fun S _ _ => carrier_of_relation_class S)
(fun _ L fcl => product_of_arguments L));
intros.
exact (apply_morphism _ _ (Function m) X).
exact H.
exact c.
exact x.
simpl;
rewrite <-
(about_carrier_of_relation_class_and_relation_class_of_argument_class S);
exact X.
split.
rewrite <-
(about_carrier_of_relation_class_and_relation_class_of_argument_class S);
exact X.
exact X0.
Defined.
Theorem setoid_rewrite:
forall Hole dir Out dir' (E1 E2: carrier_of_relation_class Hole)
(E: Morphism_Context Hole dir Out dir'),
(directed_relation_of_relation_class dir Hole E1 E2) ->
(directed_relation_of_relation_class dir' Out (interp E1 E) (interp E2 E)).
Proof.
intros.
elim E using
(@Morphism_Context_rect2 Hole dir
(fun S dir'' E => directed_relation_of_relation_class dir'' S (interp E1 E) (interp E2 E))
(fun dir'' L fcl =>
relation_of_product_of_arguments dir'' _
(interp_relation_class_list E1 fcl)
(interp_relation_class_list E2 fcl))); intros.
change (directed_relation_of_relation_class dir'0 Out0
(apply_morphism _ _ (Function m) (interp_relation_class_list E1 m0))
(apply_morphism _ _ (Function m) (interp_relation_class_list E2 m0))).
destruct dir'0.
apply apply_morphism_compatibility_Left2Right.
exact (Compat m).
exact H0.
apply apply_morphism_compatibility_Right2Left.
exact (Compat m).
exact H0.
exact H.
unfold interp, Morphism_Context_rect2.
(* CSC: reflexivity used here *)
destruct S; destruct dir'0; simpl; (apply r || reflexivity).
destruct dir'0; exact r.
destruct S; unfold directed_relation_of_argument_class; simpl in H0 |- *;
unfold get_rewrite_direction; simpl.
destruct dir'0; destruct dir'';
(exact H0 ||
unfold directed_relation_of_argument_class; simpl; apply s; exact H0).
(* the following mess with generalize/clear/intros is to help Coq resolving *)
(* second order unification problems. *)
generalize m c H0; clear H0 m c; inversion c;
generalize m c; clear m c; rewrite <- H1; rewrite <- H2; intros;
(exact H3 || rewrite (opposite_direction_idempotent dir'0); apply H3).
destruct dir'0; destruct dir'';
(exact H0 ||
unfold directed_relation_of_argument_class; simpl; apply s; exact H0).
(* the following mess with generalize/clear/intros is to help Coq resolving *)
(* second order unification problems. *)
generalize m c H0; clear H0 m c; inversion c;
generalize m c; clear m c; rewrite <- H1; rewrite <- H2; intros;
(exact H3 || rewrite (opposite_direction_idempotent dir'0); apply H3).
destruct dir'0; destruct dir''; (exact H0 || hnf; symmetry; exact H0).
change
(directed_relation_of_argument_class (get_rewrite_direction dir'' S) S
(eq_rect _ (fun T : Type => T) (interp E1 m) _
(about_carrier_of_relation_class_and_relation_class_of_argument_class S))
(eq_rect _ (fun T : Type => T) (interp E2 m) _
(about_carrier_of_relation_class_and_relation_class_of_argument_class S)) /\
relation_of_product_of_arguments dir'' _
(interp_relation_class_list E1 m0) (interp_relation_class_list E2 m0)).
split.
clear m0 H1; destruct S; simpl in H0 |- *; unfold get_rewrite_direction; simpl.
destruct dir''; destruct dir'0; (exact H0 || hnf; apply s; exact H0).
inversion c.
rewrite <- H3; exact H0.
rewrite (opposite_direction_idempotent dir'0); exact H0.
destruct dir''; destruct dir'0; (exact H0 || hnf; apply s; exact H0).
inversion c.
rewrite <- H3; exact H0.
rewrite (opposite_direction_idempotent dir'0); exact H0.
destruct dir''; destruct dir'0; (exact H0 || hnf; symmetry; exact H0).
exact H1.
Qed.
|