1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Relation_Operators.v 13323 2010-07-24 15:57:30Z herbelin $ i*)
(************************************************************************)
(** * Bruno Barras, Cristina Cornes *)
(** * *)
(** * Some of these definitions were taken from : *)
(** * Constructing Recursion Operators in Type Theory *)
(** * L. Paulson JSC (1986) 2, 325-355 *)
(************************************************************************)
Require Import Relation_Definitions.
(** * Some operators to build relations *)
(** ** Transitive closure *)
Section Transitive_Closure.
Variable A : Type.
Variable R : relation A.
(** Definition by direct transitive closure *)
Inductive clos_trans (x: A) : A -> Prop :=
| t_step (y:A) : R x y -> clos_trans x y
| t_trans (y z:A) : clos_trans x y -> clos_trans y z -> clos_trans x z.
(** Alternative definition by transitive extension on the left *)
Inductive clos_trans_1n (x: A) : A -> Prop :=
| t1n_step (y:A) : R x y -> clos_trans_1n x y
| t1n_trans (y z:A) : R x y -> clos_trans_1n y z -> clos_trans_1n x z.
(** Alternative definition by transitive extension on the right *)
Inductive clos_trans_n1 (x: A) : A -> Prop :=
| tn1_step (y:A) : R x y -> clos_trans_n1 x y
| tn1_trans (y z:A) : R y z -> clos_trans_n1 x y -> clos_trans_n1 x z.
End Transitive_Closure.
(** ** Reflexive-transitive closure *)
Section Reflexive_Transitive_Closure.
Variable A : Type.
Variable R : relation A.
(** Definition by direct reflexive-transitive closure *)
Inductive clos_refl_trans (x:A) : A -> Prop :=
| rt_step (y:A) : R x y -> clos_refl_trans x y
| rt_refl : clos_refl_trans x x
| rt_trans (y z:A) :
clos_refl_trans x y -> clos_refl_trans y z -> clos_refl_trans x z.
(** Alternative definition by transitive extension on the left *)
Inductive clos_refl_trans_1n (x: A) : A -> Prop :=
| rt1n_refl : clos_refl_trans_1n x x
| rt1n_trans (y z:A) :
R x y -> clos_refl_trans_1n y z -> clos_refl_trans_1n x z.
(** Alternative definition by transitive extension on the right *)
Inductive clos_refl_trans_n1 (x: A) : A -> Prop :=
| rtn1_refl : clos_refl_trans_n1 x x
| rtn1_trans (y z:A) :
R y z -> clos_refl_trans_n1 x y -> clos_refl_trans_n1 x z.
End Reflexive_Transitive_Closure.
(** ** Reflexive-symmetric-transitive closure *)
Section Reflexive_Symmetric_Transitive_Closure.
Variable A : Type.
Variable R : relation A.
(** Definition by direct reflexive-symmetric-transitive closure *)
Inductive clos_refl_sym_trans : relation A :=
| rst_step (x y:A) : R x y -> clos_refl_sym_trans x y
| rst_refl (x:A) : clos_refl_sym_trans x x
| rst_sym (x y:A) : clos_refl_sym_trans x y -> clos_refl_sym_trans y x
| rst_trans (x y z:A) :
clos_refl_sym_trans x y ->
clos_refl_sym_trans y z -> clos_refl_sym_trans x z.
(** Alternative definition by symmetric-transitive extension on the left *)
Inductive clos_refl_sym_trans_1n (x: A) : A -> Prop :=
| rst1n_refl : clos_refl_sym_trans_1n x x
| rst1n_trans (y z:A) : R x y \/ R y x ->
clos_refl_sym_trans_1n y z -> clos_refl_sym_trans_1n x z.
(** Alternative definition by symmetric-transitive extension on the right *)
Inductive clos_refl_sym_trans_n1 (x: A) : A -> Prop :=
| rstn1_refl : clos_refl_sym_trans_n1 x x
| rstn1_trans (y z:A) : R y z \/ R z y ->
clos_refl_sym_trans_n1 x y -> clos_refl_sym_trans_n1 x z.
End Reflexive_Symmetric_Transitive_Closure.
(** ** Converse of a relation *)
Section Converse.
Variable A : Type.
Variable R : relation A.
Definition transp (x y:A) := R y x.
End Converse.
(** ** Union of relations *)
Section Union.
Variable A : Type.
Variables R1 R2 : relation A.
Definition union (x y:A) := R1 x y \/ R2 x y.
End Union.
(** ** Disjoint union of relations *)
Section Disjoint_Union.
Variables A B : Type.
Variable leA : A -> A -> Prop.
Variable leB : B -> B -> Prop.
Inductive le_AsB : A + B -> A + B -> Prop :=
| le_aa (x y:A) : leA x y -> le_AsB (inl _ x) (inl _ y)
| le_ab (x:A) (y:B) : le_AsB (inl _ x) (inr _ y)
| le_bb (x y:B) : leB x y -> le_AsB (inr _ x) (inr _ y).
End Disjoint_Union.
(** ** Lexicographic order on dependent pairs *)
Section Lexicographic_Product.
Variable A : Type.
Variable B : A -> Type.
Variable leA : A -> A -> Prop.
Variable leB : forall x:A, B x -> B x -> Prop.
Inductive lexprod : sigS B -> sigS B -> Prop :=
| left_lex :
forall (x x':A) (y:B x) (y':B x'),
leA x x' -> lexprod (existS B x y) (existS B x' y')
| right_lex :
forall (x:A) (y y':B x),
leB x y y' -> lexprod (existS B x y) (existS B x y').
End Lexicographic_Product.
(** ** Product of relations *)
Section Symmetric_Product.
Variable A : Type.
Variable B : Type.
Variable leA : A -> A -> Prop.
Variable leB : B -> B -> Prop.
Inductive symprod : A * B -> A * B -> Prop :=
| left_sym :
forall x x':A, leA x x' -> forall y:B, symprod (x, y) (x', y)
| right_sym :
forall y y':B, leB y y' -> forall x:A, symprod (x, y) (x, y').
End Symmetric_Product.
(** ** Multiset of two relations *)
Section Swap.
Variable A : Type.
Variable R : A -> A -> Prop.
Inductive swapprod : A * A -> A * A -> Prop :=
| sp_noswap x y (p:A * A) : symprod A A R R (x, y) p -> swapprod (x, y) p
| sp_swap x y (p:A * A) : symprod A A R R (x, y) p -> swapprod (y, x) p.
End Swap.
Local Open Scope list_scope.
Section Lexicographic_Exponentiation.
Variable A : Set.
Variable leA : A -> A -> Prop.
Let Nil := nil (A:=A).
Let List := list A.
Inductive Ltl : List -> List -> Prop :=
| Lt_nil (a:A) (x:List) : Ltl Nil (a :: x)
| Lt_hd (a b:A) : leA a b -> forall x y:list A, Ltl (a :: x) (b :: y)
| Lt_tl (a:A) (x y:List) : Ltl x y -> Ltl (a :: x) (a :: y).
Inductive Desc : List -> Prop :=
| d_nil : Desc Nil
| d_one (x:A) : Desc (x :: Nil)
| d_conc (x y:A) (l:List) :
leA x y -> Desc (l ++ y :: Nil) -> Desc ((l ++ y :: Nil) ++ x :: Nil).
Definition Pow : Set := sig Desc.
Definition lex_exp (a b:Pow) : Prop := Ltl (proj1_sig a) (proj1_sig b).
End Lexicographic_Exponentiation.
Hint Unfold transp union: sets v62.
Hint Resolve t_step rt_step rt_refl rst_step rst_refl: sets v62.
Hint Immediate rst_sym: sets v62.
(* begin hide *)
(* Compatibility *)
Notation rts1n_refl := rst1n_refl (only parsing).
Notation rts1n_trans := rst1n_trans (only parsing).
Notation rtsn1_refl := rstn1_refl (only parsing).
Notation rtsn1_trans := rstn1_trans (only parsing).
(* end hide *)
|