1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Newman.v 9245 2006-10-17 12:53:34Z notin $ i*)
Require Import Rstar.
Section Newman.
Variable A : Type.
Variable R : A -> A -> Prop.
Let Rstar := Rstar A R.
Let Rstar_reflexive := Rstar_reflexive A R.
Let Rstar_transitive := Rstar_transitive A R.
Let Rstar_Rstar' := Rstar_Rstar' A R.
Definition coherence (x y:A) := ex2 (Rstar x) (Rstar y).
Theorem coherence_intro :
forall x y z:A, Rstar x z -> Rstar y z -> coherence x y.
Proof fun (x y z:A) (h1:Rstar x z) (h2:Rstar y z) =>
ex_intro2 (Rstar x) (Rstar y) z h1 h2.
(** A very simple case of coherence : *)
Lemma Rstar_coherence : forall x y:A, Rstar x y -> coherence x y.
Proof
fun (x y:A) (h:Rstar x y) => coherence_intro x y y h (Rstar_reflexive y).
(** coherence is symmetric *)
Lemma coherence_sym : forall x y:A, coherence x y -> coherence y x.
Proof
fun (x y:A) (h:coherence x y) =>
ex2_ind
(fun (w:A) (h1:Rstar x w) (h2:Rstar y w) =>
coherence_intro y x w h2 h1) h.
Definition confluence (x:A) :=
forall y z:A, Rstar x y -> Rstar x z -> coherence y z.
Definition local_confluence (x:A) :=
forall y z:A, R x y -> R x z -> coherence y z.
Definition noetherian :=
forall (x:A) (P:A -> Prop),
(forall y:A, (forall z:A, R y z -> P z) -> P y) -> P x.
Section Newman_section.
(** The general hypotheses of the theorem *)
Hypothesis Hyp1 : noetherian.
Hypothesis Hyp2 : forall x:A, local_confluence x.
(** The induction hypothesis *)
Section Induct.
Variable x : A.
Hypothesis hyp_ind : forall u:A, R x u -> confluence u.
(** Confluence in [x] *)
Variables y z : A.
Hypothesis h1 : Rstar x y.
Hypothesis h2 : Rstar x z.
(** particular case [x->u] and [u->*y] *)
Section Newman_.
Variable u : A.
Hypothesis t1 : R x u.
Hypothesis t2 : Rstar u y.
(** In the usual diagram, we assume also [x->v] and [v->*z] *)
Theorem Diagram : forall (v:A) (u1:R x v) (u2:Rstar v z), coherence y z.
Proof
(* We draw the diagram ! *)
fun (v:A) (u1:R x v) (u2:Rstar v z) =>
ex2_ind
(* local confluence in x for u,v *)
(* gives w, u->*w and v->*w *)
(fun (w:A) (s1:Rstar u w) (s2:Rstar v w) =>
ex2_ind
(* confluence in u => coherence(y,w) *)
(* gives a, y->*a and z->*a *)
(fun (a:A) (v1:Rstar y a) (v2:Rstar w a) =>
ex2_ind
(* confluence in v => coherence(a,z) *)
(* gives b, a->*b and z->*b *)
(fun (b:A) (w1:Rstar a b) (w2:Rstar z b) =>
coherence_intro y z b (Rstar_transitive y a b v1 w1) w2)
(hyp_ind v u1 a z (Rstar_transitive v w a s2 v2) u2))
(hyp_ind u t1 y w t2 s1)) (Hyp2 x u v t1 u1).
Theorem caseRxy : coherence y z.
Proof
Rstar_Rstar' x z h2 (fun v w:A => coherence y w)
(coherence_sym x y (Rstar_coherence x y h1)) (*i case x=z i*)
Diagram. (*i case x->v->*z i*)
End Newman_.
Theorem Ind_proof : coherence y z.
Proof
Rstar_Rstar' x y h1 (fun u v:A => coherence v z)
(Rstar_coherence x z h2) (*i case x=y i*)
caseRxy. (*i case x->u->*z i*)
End Induct.
Theorem Newman : forall x:A, confluence x.
Proof fun x:A => Hyp1 x confluence Ind_proof.
End Newman_section.
End Newman.
|