1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Sqrt_reg.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
Require Import Ranalysis1.
Require Import R_sqrt.
Open Local Scope R_scope.
(**********)
Lemma sqrt_var_maj :
forall h:R, Rabs h <= 1 -> Rabs (sqrt (1 + h) - 1) <= Rabs h.
Proof.
intros; cut (0 <= 1 + h).
intro; apply Rle_trans with (Rabs (sqrt (Rsqr (1 + h)) - 1)).
case (total_order_T h 0); intro.
elim s; intro.
repeat rewrite Rabs_left.
unfold Rminus in |- *; do 2 rewrite <- (Rplus_comm (-1)).
do 2 rewrite Ropp_plus_distr; rewrite Ropp_involutive;
apply Rplus_le_compat_l.
apply Ropp_le_contravar; apply sqrt_le_1.
apply Rle_0_sqr.
apply H0.
pattern (1 + h) at 2 in |- *; rewrite <- Rmult_1_r; unfold Rsqr in |- *;
apply Rmult_le_compat_l.
apply H0.
pattern 1 at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
assumption.
apply Rplus_lt_reg_r with 1; rewrite Rplus_0_r; rewrite Rplus_comm;
unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_l;
rewrite Rplus_0_r.
pattern 1 at 2 in |- *; rewrite <- sqrt_1; apply sqrt_lt_1.
apply Rle_0_sqr.
left; apply Rlt_0_1.
pattern 1 at 2 in |- *; rewrite <- Rsqr_1; apply Rsqr_incrst_1.
pattern 1 at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
assumption.
apply H0.
left; apply Rlt_0_1.
apply Rplus_lt_reg_r with 1; rewrite Rplus_0_r; rewrite Rplus_comm;
unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_l;
rewrite Rplus_0_r.
pattern 1 at 2 in |- *; rewrite <- sqrt_1; apply sqrt_lt_1.
apply H0.
left; apply Rlt_0_1.
pattern 1 at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
assumption.
rewrite b; rewrite Rplus_0_r; rewrite Rsqr_1; rewrite sqrt_1; right;
reflexivity.
repeat rewrite Rabs_right.
unfold Rminus in |- *; do 2 rewrite <- (Rplus_comm (-1));
apply Rplus_le_compat_l.
apply sqrt_le_1.
apply H0.
apply Rle_0_sqr.
pattern (1 + h) at 1 in |- *; rewrite <- Rmult_1_r; unfold Rsqr in |- *;
apply Rmult_le_compat_l.
apply H0.
pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
assumption.
apply Rle_ge; apply Rplus_le_reg_l with 1.
rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus in |- *;
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r.
pattern 1 at 1 in |- *; rewrite <- sqrt_1; apply sqrt_le_1.
left; apply Rlt_0_1.
apply Rle_0_sqr.
pattern 1 at 1 in |- *; rewrite <- Rsqr_1; apply Rsqr_incr_1.
pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
assumption.
left; apply Rlt_0_1.
apply H0.
apply Rle_ge; left; apply Rplus_lt_reg_r with 1.
rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus in |- *;
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r.
pattern 1 at 1 in |- *; rewrite <- sqrt_1; apply sqrt_lt_1.
left; apply Rlt_0_1.
apply H0.
pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
assumption.
rewrite sqrt_Rsqr.
replace (1 + h - 1) with h; [ right; reflexivity | ring ].
apply H0.
case (total_order_T h 0); intro.
elim s; intro.
rewrite (Rabs_left h a) in H.
apply Rplus_le_reg_l with (- h).
rewrite Rplus_0_r; rewrite Rplus_comm; rewrite Rplus_assoc;
rewrite Rplus_opp_r; rewrite Rplus_0_r; exact H.
left; rewrite b; rewrite Rplus_0_r; apply Rlt_0_1.
left; apply Rplus_lt_0_compat.
apply Rlt_0_1.
apply r.
Qed.
(** sqrt is continuous in 1 *)
Lemma sqrt_continuity_pt_R1 : continuity_pt sqrt 1.
Proof.
unfold continuity_pt in |- *; unfold continue_in in |- *;
unfold limit1_in in |- *; unfold limit_in in |- *;
unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
intros.
set (alpha := Rmin eps 1).
exists alpha; intros.
split.
unfold alpha in |- *; unfold Rmin in |- *; case (Rle_dec eps 1); intro.
assumption.
apply Rlt_0_1.
intros; elim H0; intros.
rewrite sqrt_1; replace x with (1 + (x - 1)); [ idtac | ring ];
apply Rle_lt_trans with (Rabs (x - 1)).
apply sqrt_var_maj.
apply Rle_trans with alpha.
left; apply H2.
unfold alpha in |- *; apply Rmin_r.
apply Rlt_le_trans with alpha;
[ apply H2 | unfold alpha in |- *; apply Rmin_l ].
Qed.
(** sqrt is continuous forall x>0 *)
Lemma sqrt_continuity_pt : forall x:R, 0 < x -> continuity_pt sqrt x.
Proof.
intros; generalize sqrt_continuity_pt_R1.
unfold continuity_pt in |- *; unfold continue_in in |- *;
unfold limit1_in in |- *; unfold limit_in in |- *;
unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
intros.
cut (0 < eps / sqrt x).
intro; elim (H0 _ H2); intros alp_1 H3.
elim H3; intros.
set (alpha := alp_1 * x).
exists (Rmin alpha x); intros.
split.
change (0 < Rmin alpha x) in |- *; unfold Rmin in |- *;
case (Rle_dec alpha x); intro.
unfold alpha in |- *; apply Rmult_lt_0_compat; assumption.
apply H.
intros; replace x0 with (x + (x0 - x)); [ idtac | ring ];
replace (sqrt (x + (x0 - x)) - sqrt x) with
(sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1)).
rewrite Rabs_mult; rewrite (Rabs_right (sqrt x)).
apply Rmult_lt_reg_l with (/ sqrt x).
apply Rinv_0_lt_compat; apply sqrt_lt_R0; assumption.
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; rewrite Rmult_comm.
unfold Rdiv in H5.
case (Req_dec x x0); intro.
rewrite H7; unfold Rminus, Rdiv in |- *; rewrite Rplus_opp_r;
rewrite Rmult_0_l; rewrite Rplus_0_r; rewrite Rplus_opp_r;
rewrite Rabs_R0.
apply Rmult_lt_0_compat.
assumption.
apply Rinv_0_lt_compat; rewrite <- H7; apply sqrt_lt_R0; assumption.
apply H5.
split.
unfold D_x, no_cond in |- *.
split.
trivial.
red in |- *; intro.
cut ((x0 - x) * / x = 0).
intro.
elim (Rmult_integral _ _ H9); intro.
elim H7.
apply (Rminus_diag_uniq_sym _ _ H10).
assert (H11 := Rmult_eq_0_compat_r _ x H10).
rewrite <- Rinv_l_sym in H11.
elim R1_neq_R0; exact H11.
red in |- *; intro; rewrite H12 in H; elim (Rlt_irrefl _ H).
symmetry in |- *; apply Rplus_eq_reg_l with 1; rewrite Rplus_0_r;
unfold Rdiv in H8; exact H8.
unfold Rminus in |- *; rewrite Rplus_comm; rewrite <- Rplus_assoc;
rewrite Rplus_opp_l; rewrite Rplus_0_l; elim H6; intros.
unfold Rdiv in |- *; rewrite Rabs_mult.
rewrite Rabs_Rinv.
rewrite (Rabs_right x).
rewrite Rmult_comm; apply Rmult_lt_reg_l with x.
apply H.
rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym.
rewrite Rmult_1_l; rewrite Rmult_comm; fold alpha in |- *.
apply Rlt_le_trans with (Rmin alpha x).
apply H9.
apply Rmin_l.
red in |- *; intro; rewrite H10 in H; elim (Rlt_irrefl _ H).
apply Rle_ge; left; apply H.
red in |- *; intro; rewrite H10 in H; elim (Rlt_irrefl _ H).
assert (H7 := sqrt_lt_R0 x H).
red in |- *; intro; rewrite H8 in H7; elim (Rlt_irrefl _ H7).
apply Rle_ge; apply sqrt_positivity.
left; apply H.
unfold Rminus in |- *; rewrite Rmult_plus_distr_l;
rewrite Ropp_mult_distr_r_reverse; repeat rewrite <- sqrt_mult.
rewrite Rmult_1_r; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r;
unfold Rdiv in |- *; rewrite Rmult_comm; rewrite Rmult_assoc;
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; reflexivity.
red in |- *; intro; rewrite H7 in H; elim (Rlt_irrefl _ H).
left; apply H.
left; apply Rlt_0_1.
left; apply H.
elim H6; intros.
case (Rcase_abs (x0 - x)); intro.
rewrite (Rabs_left (x0 - x) r) in H8.
rewrite Rplus_comm.
apply Rplus_le_reg_l with (- ((x0 - x) / x)).
rewrite Rplus_0_r; rewrite <- Rplus_assoc; rewrite Rplus_opp_l;
rewrite Rplus_0_l; unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse.
apply Rmult_le_reg_l with x.
apply H.
rewrite Rmult_1_r; rewrite Rmult_comm; rewrite Rmult_assoc;
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; left; apply Rlt_le_trans with (Rmin alpha x).
apply H8.
apply Rmin_r.
red in |- *; intro; rewrite H9 in H; elim (Rlt_irrefl _ H).
apply Rplus_le_le_0_compat.
left; apply Rlt_0_1.
unfold Rdiv in |- *; apply Rmult_le_pos.
apply Rge_le; exact r.
left; apply Rinv_0_lt_compat; apply H.
unfold Rdiv in |- *; apply Rmult_lt_0_compat.
apply H1.
apply Rinv_0_lt_compat; apply sqrt_lt_R0; apply H.
Qed.
(** sqrt is derivable for all x>0 *)
Lemma derivable_pt_lim_sqrt :
forall x:R, 0 < x -> derivable_pt_lim sqrt x (/ (2 * sqrt x)).
Proof.
intros; set (g := fun h:R => sqrt x + sqrt (x + h)).
cut (continuity_pt g 0).
intro; cut (g 0 <> 0).
intro; assert (H2 := continuity_pt_inv g 0 H0 H1).
unfold derivable_pt_lim in |- *; intros; unfold continuity_pt in H2;
unfold continue_in in H2; unfold limit1_in in H2;
unfold limit_in in H2; simpl in H2; unfold R_dist in H2.
elim (H2 eps H3); intros alpha H4.
elim H4; intros.
set (alpha1 := Rmin alpha x).
cut (0 < alpha1).
intro; exists (mkposreal alpha1 H7); intros.
replace ((sqrt (x + h) - sqrt x) / h) with (/ (sqrt x + sqrt (x + h))).
unfold inv_fct, g in H6; replace (2 * sqrt x) with (sqrt x + sqrt (x + 0)).
apply H6.
split.
unfold D_x, no_cond in |- *.
split.
trivial.
apply (sym_not_eq (A:=R)); exact H8.
unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r;
apply Rlt_le_trans with alpha1.
exact H9.
unfold alpha1 in |- *; apply Rmin_l.
rewrite Rplus_0_r; ring.
cut (0 <= x + h).
intro; cut (0 < sqrt x + sqrt (x + h)).
intro; apply Rmult_eq_reg_l with (sqrt x + sqrt (x + h)).
rewrite <- Rinv_r_sym.
rewrite Rplus_comm; unfold Rdiv in |- *; rewrite <- Rmult_assoc;
rewrite Rsqr_plus_minus; repeat rewrite Rsqr_sqrt.
rewrite Rplus_comm; unfold Rminus in |- *; rewrite Rplus_assoc;
rewrite Rplus_opp_r; rewrite Rplus_0_r; rewrite <- Rinv_r_sym.
reflexivity.
apply H8.
left; apply H.
assumption.
red in |- *; intro; rewrite H12 in H11; elim (Rlt_irrefl _ H11).
red in |- *; intro; rewrite H12 in H11; elim (Rlt_irrefl _ H11).
apply Rplus_lt_le_0_compat.
apply sqrt_lt_R0; apply H.
apply sqrt_positivity; apply H10.
case (Rcase_abs h); intro.
rewrite (Rabs_left h r) in H9.
apply Rplus_le_reg_l with (- h).
rewrite Rplus_0_r; rewrite Rplus_comm; rewrite Rplus_assoc;
rewrite Rplus_opp_r; rewrite Rplus_0_r; left; apply Rlt_le_trans with alpha1.
apply H9.
unfold alpha1 in |- *; apply Rmin_r.
apply Rplus_le_le_0_compat.
left; assumption.
apply Rge_le; apply r.
unfold alpha1 in |- *; unfold Rmin in |- *; case (Rle_dec alpha x); intro.
apply H5.
apply H.
unfold g in |- *; rewrite Rplus_0_r.
cut (0 < sqrt x + sqrt x).
intro; red in |- *; intro; rewrite H2 in H1; elim (Rlt_irrefl _ H1).
apply Rplus_lt_0_compat; apply sqrt_lt_R0; apply H.
replace g with (fct_cte (sqrt x) + comp sqrt (fct_cte x + id))%F;
[ idtac | reflexivity ].
apply continuity_pt_plus.
apply continuity_pt_const; unfold constant, fct_cte in |- *; intro;
reflexivity.
apply continuity_pt_comp.
apply continuity_pt_plus.
apply continuity_pt_const; unfold constant, fct_cte in |- *; intro;
reflexivity.
apply derivable_continuous_pt; apply derivable_pt_id.
apply sqrt_continuity_pt.
unfold plus_fct, fct_cte, id in |- *; rewrite Rplus_0_r; apply H.
Qed.
(**********)
Lemma derivable_pt_sqrt : forall x:R, 0 < x -> derivable_pt sqrt x.
Proof.
unfold derivable_pt in |- *; intros.
exists (/ (2 * sqrt x)).
apply derivable_pt_lim_sqrt; assumption.
Qed.
(**********)
Lemma derive_pt_sqrt :
forall (x:R) (pr:0 < x),
derive_pt sqrt x (derivable_pt_sqrt _ pr) = / (2 * sqrt x).
Proof.
intros.
apply derive_pt_eq_0.
apply derivable_pt_lim_sqrt; assumption.
Qed.
(** We show that sqrt is continuous for all x>=0 *)
(** Remark : by definition of sqrt (as extension of Rsqrt on |R),
we could also show that sqrt is continuous for all x *)
Lemma continuity_pt_sqrt : forall x:R, 0 <= x -> continuity_pt sqrt x.
Proof.
intros; case (Rtotal_order 0 x); intro.
apply (sqrt_continuity_pt x H0).
elim H0; intro.
unfold continuity_pt in |- *; unfold continue_in in |- *;
unfold limit1_in in |- *; unfold limit_in in |- *;
simpl in |- *; unfold R_dist in |- *; intros.
exists (Rsqr eps); intros.
split.
change (0 < Rsqr eps) in |- *; apply Rsqr_pos_lt.
red in |- *; intro; rewrite H3 in H2; elim (Rlt_irrefl _ H2).
intros; elim H3; intros.
rewrite <- H1; rewrite sqrt_0; unfold Rminus in |- *; rewrite Ropp_0;
rewrite Rplus_0_r; rewrite <- H1 in H5; unfold Rminus in H5;
rewrite Ropp_0 in H5; rewrite Rplus_0_r in H5.
case (Rcase_abs x0); intro.
unfold sqrt in |- *; case (Rcase_abs x0); intro.
rewrite Rabs_R0; apply H2.
assert (H6 := Rge_le _ _ r0); elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H6 r)).
rewrite Rabs_right.
apply Rsqr_incrst_0.
rewrite Rsqr_sqrt.
rewrite (Rabs_right x0 r) in H5; apply H5.
apply Rge_le; exact r.
apply sqrt_positivity; apply Rge_le; exact r.
left; exact H2.
apply Rle_ge; apply sqrt_positivity; apply Rge_le; exact r.
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H1 H)).
Qed.
|