1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Rtrigo_alt.v 13323 2010-07-24 15:57:30Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Rtrigo_def.
Open Local Scope R_scope.
(***************************************************************)
(** Using series definitions of cos and sin *)
(***************************************************************)
Definition sin_term (a:R) (i:nat) : R :=
(-1) ^ i * (a ^ (2 * i + 1) / INR (fact (2 * i + 1))).
Definition cos_term (a:R) (i:nat) : R :=
(-1) ^ i * (a ^ (2 * i) / INR (fact (2 * i))).
Definition sin_approx (a:R) (n:nat) : R := sum_f_R0 (sin_term a) n.
Definition cos_approx (a:R) (n:nat) : R := sum_f_R0 (cos_term a) n.
(**********)
Lemma PI_4 : PI <= 4.
Proof.
assert (H0 := PI_ineq 0).
elim H0; clear H0; intros _ H0.
unfold tg_alt, PI_tg in H0; simpl in H0.
rewrite Rinv_1 in H0; rewrite Rmult_1_r in H0; unfold Rdiv in H0.
apply Rmult_le_reg_l with (/ 4).
apply Rinv_0_lt_compat; prove_sup0.
rewrite <- Rinv_l_sym; [ rewrite Rmult_comm; assumption | discrR ].
Qed.
(**********)
Theorem sin_bound :
forall (a:R) (n:nat),
0 <= a ->
a <= PI -> sin_approx a (2 * n + 1) <= sin a <= sin_approx a (2 * (n + 1)).
Proof.
intros; case (Req_dec a 0); intro Hyp_a.
rewrite Hyp_a; rewrite sin_0; split; right; unfold sin_approx in |- *;
apply sum_eq_R0 || (symmetry in |- *; apply sum_eq_R0);
intros; unfold sin_term in |- *; rewrite pow_add;
simpl in |- *; unfold Rdiv in |- *; rewrite Rmult_0_l;
ring.
unfold sin_approx in |- *; cut (0 < a).
intro Hyp_a_pos.
rewrite (decomp_sum (sin_term a) (2 * n + 1)).
rewrite (decomp_sum (sin_term a) (2 * (n + 1))).
replace (sin_term a 0) with a.
cut
(sum_f_R0 (fun i:nat => sin_term a (S i)) (pred (2 * n + 1)) <= sin a - a /\
sin a - a <= sum_f_R0 (fun i:nat => sin_term a (S i)) (pred (2 * (n + 1))) ->
a + sum_f_R0 (fun i:nat => sin_term a (S i)) (pred (2 * n + 1)) <= sin a /\
sin a <= a + sum_f_R0 (fun i:nat => sin_term a (S i)) (pred (2 * (n + 1)))).
intro; apply H1.
set (Un := fun n:nat => a ^ (2 * S n + 1) / INR (fact (2 * S n + 1))).
replace (pred (2 * n + 1)) with (2 * n)%nat.
replace (pred (2 * (n + 1))) with (S (2 * n)).
replace (sum_f_R0 (fun i:nat => sin_term a (S i)) (2 * n)) with
(- sum_f_R0 (tg_alt Un) (2 * n)).
replace (sum_f_R0 (fun i:nat => sin_term a (S i)) (S (2 * n))) with
(- sum_f_R0 (tg_alt Un) (S (2 * n))).
cut
(sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <=
sum_f_R0 (tg_alt Un) (2 * n) ->
- sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <=
- sum_f_R0 (tg_alt Un) (S (2 * n))).
intro; apply H2.
apply alternated_series_ineq.
unfold Un_decreasing, Un in |- *; intro;
cut ((2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))).
intro; rewrite H3.
replace (a ^ S (S (2 * S n0 + 1))) with (a ^ (2 * S n0 + 1) * (a * a)).
unfold Rdiv in |- *; rewrite Rmult_assoc; apply Rmult_le_compat_l.
left; apply pow_lt; assumption.
apply Rmult_le_reg_l with (INR (fact (S (S (2 * S n0 + 1))))).
rewrite <- H3; apply lt_INR_0; apply neq_O_lt; red in |- *; intro;
assert (H5 := sym_eq H4); elim (fact_neq_0 _ H5).
rewrite <- H3; rewrite (Rmult_comm (INR (fact (2 * S (S n0) + 1))));
rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite H3; do 2 rewrite fact_simpl; do 2 rewrite mult_INR;
repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
rewrite Rmult_1_r.
do 2 rewrite S_INR; rewrite plus_INR; rewrite mult_INR; repeat rewrite S_INR;
simpl in |- *;
replace
(((0 + 1 + 1) * (INR n0 + 1) + (0 + 1) + 1 + 1) *
((0 + 1 + 1) * (INR n0 + 1) + (0 + 1) + 1)) with
(4 * INR n0 * INR n0 + 18 * INR n0 + 20); [ idtac | ring ].
apply Rle_trans with 20.
apply Rle_trans with 16.
replace 16 with (Rsqr 4); [ idtac | ring_Rsqr ].
replace (a * a) with (Rsqr a); [ idtac | reflexivity ].
apply Rsqr_incr_1.
apply Rle_trans with PI; [ assumption | apply PI_4 ].
assumption.
left; prove_sup0.
rewrite <- (Rplus_0_r 16); replace 20 with (16 + 4);
[ apply Rplus_le_compat_l; left; prove_sup0 | ring ].
rewrite <- (Rplus_comm 20); pattern 20 at 1 in |- *; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l.
apply Rplus_le_le_0_compat.
repeat apply Rmult_le_pos.
left; prove_sup0.
left; prove_sup0.
replace 0 with (INR 0); [ apply le_INR; apply le_O_n | reflexivity ].
replace 0 with (INR 0); [ apply le_INR; apply le_O_n | reflexivity ].
apply Rmult_le_pos.
left; prove_sup0.
replace 0 with (INR 0); [ apply le_INR; apply le_O_n | reflexivity ].
apply INR_fact_neq_0.
apply INR_fact_neq_0.
simpl in |- *; ring.
ring.
assert (H3 := cv_speed_pow_fact a); unfold Un in |- *; unfold Un_cv in H3;
unfold R_dist in H3; unfold Un_cv in |- *; unfold R_dist in |- *;
intros; elim (H3 eps H4); intros N H5.
exists N; intros; apply H5.
replace (2 * S n0 + 1)%nat with (S (2 * S n0)).
unfold ge in |- *; apply le_trans with (2 * S n0)%nat.
apply le_trans with (2 * S N)%nat.
apply le_trans with (2 * N)%nat.
apply le_n_2n.
apply (fun m n p:nat => mult_le_compat_l p n m); apply le_n_Sn.
apply (fun m n p:nat => mult_le_compat_l p n m); apply le_n_S; assumption.
apply le_n_Sn.
ring.
assert (X := exist_sin (Rsqr a)); elim X; intros.
cut (x = sin a / a).
intro; rewrite H3 in p; unfold sin_in in p; unfold infinite_sum in p;
unfold R_dist in p; unfold Un_cv in |- *; unfold R_dist in |- *;
intros.
cut (0 < eps / Rabs a).
intro; elim (p _ H5); intros N H6.
exists N; intros.
replace (sum_f_R0 (tg_alt Un) n0) with
(a * (1 - sum_f_R0 (fun i:nat => sin_n i * Rsqr a ^ i) (S n0))).
unfold Rminus in |- *; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r;
rewrite Ropp_plus_distr; rewrite Ropp_involutive;
repeat rewrite Rplus_assoc; rewrite (Rplus_comm a);
rewrite (Rplus_comm (- a)); repeat rewrite Rplus_assoc;
rewrite Rplus_opp_l; rewrite Rplus_0_r; apply Rmult_lt_reg_l with (/ Rabs a).
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
pattern (/ Rabs a) at 1 in |- *; rewrite <- (Rabs_Rinv a Hyp_a).
rewrite <- Rabs_mult; rewrite Rmult_plus_distr_l; rewrite <- Rmult_assoc;
rewrite <- Rinv_l_sym; [ rewrite Rmult_1_l | assumption ];
rewrite (Rmult_comm (/ a)); rewrite (Rmult_comm (/ Rabs a));
rewrite <- Rabs_Ropp; rewrite Ropp_plus_distr; rewrite Ropp_involutive;
unfold Rminus, Rdiv in H6; apply H6; unfold ge in |- *;
apply le_trans with n0; [ exact H7 | apply le_n_Sn ].
rewrite (decomp_sum (fun i:nat => sin_n i * Rsqr a ^ i) (S n0)).
replace (sin_n 0) with 1.
simpl in |- *; rewrite Rmult_1_r; unfold Rminus in |- *;
rewrite Ropp_plus_distr; rewrite <- Rplus_assoc; rewrite Rplus_opp_r;
rewrite Rplus_0_l; rewrite Ropp_mult_distr_r_reverse;
rewrite <- Ropp_mult_distr_l_reverse; rewrite scal_sum;
apply sum_eq.
intros; unfold sin_n, Un, tg_alt in |- *;
replace ((-1) ^ S i) with (- (-1) ^ i).
replace (a ^ (2 * S i + 1)) with (Rsqr a * Rsqr a ^ i * a).
unfold Rdiv in |- *; ring.
rewrite pow_add; rewrite pow_Rsqr; simpl in |- *; ring.
simpl in |- *; ring.
unfold sin_n in |- *; unfold Rdiv in |- *; simpl in |- *; rewrite Rinv_1;
rewrite Rmult_1_r; reflexivity.
apply lt_O_Sn.
unfold Rdiv in |- *; apply Rmult_lt_0_compat.
assumption.
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
unfold sin in |- *; case (exist_sin (Rsqr a)).
intros; cut (x = x0).
intro; rewrite H3; unfold Rdiv in |- *.
symmetry in |- *; apply Rinv_r_simpl_m; assumption.
unfold sin_in in p; unfold sin_in in s; eapply uniqueness_sum.
apply p.
apply s.
intros; elim H2; intros.
replace (sin a - a) with (- (a - sin a)); [ idtac | ring ].
split; apply Ropp_le_contravar; assumption.
replace (- sum_f_R0 (tg_alt Un) (S (2 * n))) with
(-1 * sum_f_R0 (tg_alt Un) (S (2 * n))); [ rewrite scal_sum | ring ].
apply sum_eq; intros; unfold sin_term, Un, tg_alt in |- *;
replace ((-1) ^ S i) with (-1 * (-1) ^ i).
unfold Rdiv in |- *; ring.
reflexivity.
replace (- sum_f_R0 (tg_alt Un) (2 * n)) with
(-1 * sum_f_R0 (tg_alt Un) (2 * n)); [ rewrite scal_sum | ring ].
apply sum_eq; intros.
unfold sin_term, Un, tg_alt in |- *;
replace ((-1) ^ S i) with (-1 * (-1) ^ i).
unfold Rdiv in |- *; ring.
reflexivity.
replace (2 * (n + 1))%nat with (S (S (2 * n))).
reflexivity.
ring.
replace (2 * n + 1)%nat with (S (2 * n)).
reflexivity.
ring.
intro; elim H1; intros.
split.
apply Rplus_le_reg_l with (- a).
rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l;
rewrite (Rplus_comm (- a)); apply H2.
apply Rplus_le_reg_l with (- a).
rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l;
rewrite (Rplus_comm (- a)); apply H3.
unfold sin_term in |- *; simpl in |- *; unfold Rdiv in |- *; rewrite Rinv_1;
ring.
replace (2 * (n + 1))%nat with (S (S (2 * n))).
apply lt_O_Sn.
ring.
replace (2 * n + 1)%nat with (S (2 * n)).
apply lt_O_Sn.
ring.
inversion H; [ assumption | elim Hyp_a; symmetry in |- *; assumption ].
Qed.
(**********)
Lemma cos_bound :
forall (a:R) (n:nat),
- PI / 2 <= a ->
a <= PI / 2 ->
cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1)).
Proof.
cut
((forall (a:R) (n:nat),
0 <= a ->
a <= PI / 2 ->
cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) ->
forall (a:R) (n:nat),
- PI / 2 <= a ->
a <= PI / 2 ->
cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))).
intros H a n; apply H.
intros; unfold cos_approx in |- *.
rewrite (decomp_sum (cos_term a0) (2 * n0 + 1)).
rewrite (decomp_sum (cos_term a0) (2 * (n0 + 1))).
replace (cos_term a0 0) with 1.
cut
(sum_f_R0 (fun i:nat => cos_term a0 (S i)) (pred (2 * n0 + 1)) <= cos a0 - 1 /\
cos a0 - 1 <=
sum_f_R0 (fun i:nat => cos_term a0 (S i)) (pred (2 * (n0 + 1))) ->
1 + sum_f_R0 (fun i:nat => cos_term a0 (S i)) (pred (2 * n0 + 1)) <= cos a0 /\
cos a0 <=
1 + sum_f_R0 (fun i:nat => cos_term a0 (S i)) (pred (2 * (n0 + 1)))).
intro; apply H2.
set (Un := fun n:nat => a0 ^ (2 * S n) / INR (fact (2 * S n))).
replace (pred (2 * n0 + 1)) with (2 * n0)%nat.
replace (pred (2 * (n0 + 1))) with (S (2 * n0)).
replace (sum_f_R0 (fun i:nat => cos_term a0 (S i)) (2 * n0)) with
(- sum_f_R0 (tg_alt Un) (2 * n0)).
replace (sum_f_R0 (fun i:nat => cos_term a0 (S i)) (S (2 * n0))) with
(- sum_f_R0 (tg_alt Un) (S (2 * n0))).
cut
(sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <=
sum_f_R0 (tg_alt Un) (2 * n0) ->
- sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <=
- sum_f_R0 (tg_alt Un) (S (2 * n0))).
intro; apply H3.
apply alternated_series_ineq.
unfold Un_decreasing in |- *; intro; unfold Un in |- *.
cut ((2 * S (S n1))%nat = S (S (2 * S n1))).
intro; rewrite H4;
replace (a0 ^ S (S (2 * S n1))) with (a0 ^ (2 * S n1) * (a0 * a0)).
unfold Rdiv in |- *; rewrite Rmult_assoc; apply Rmult_le_compat_l.
apply pow_le; assumption.
apply Rmult_le_reg_l with (INR (fact (S (S (2 * S n1))))).
rewrite <- H4; apply lt_INR_0; apply neq_O_lt; red in |- *; intro;
assert (H6 := sym_eq H5); elim (fact_neq_0 _ H6).
rewrite <- H4; rewrite (Rmult_comm (INR (fact (2 * S (S n1)))));
rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite H4; do 2 rewrite fact_simpl; do 2 rewrite mult_INR;
repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; do 2 rewrite S_INR; rewrite mult_INR; repeat rewrite S_INR;
simpl in |- *;
replace
(((0 + 1 + 1) * (INR n1 + 1) + 1 + 1) * ((0 + 1 + 1) * (INR n1 + 1) + 1))
with (4 * INR n1 * INR n1 + 14 * INR n1 + 12); [ idtac | ring ].
apply Rle_trans with 12.
apply Rle_trans with 4.
replace 4 with (Rsqr 2); [ idtac | ring_Rsqr ].
replace (a0 * a0) with (Rsqr a0); [ idtac | reflexivity ].
apply Rsqr_incr_1.
apply Rle_trans with (PI / 2).
assumption.
unfold Rdiv in |- *; apply Rmult_le_reg_l with 2.
prove_sup0.
rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m.
replace 4 with 4; [ apply PI_4 | ring ].
discrR.
assumption.
left; prove_sup0.
pattern 4 at 1 in |- *; rewrite <- Rplus_0_r; replace 12 with (4 + 8);
[ apply Rplus_le_compat_l; left; prove_sup0 | ring ].
rewrite <- (Rplus_comm 12); pattern 12 at 1 in |- *; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l.
apply Rplus_le_le_0_compat.
repeat apply Rmult_le_pos.
left; prove_sup0.
left; prove_sup0.
replace 0 with (INR 0); [ apply le_INR; apply le_O_n | reflexivity ].
replace 0 with (INR 0); [ apply le_INR; apply le_O_n | reflexivity ].
apply Rmult_le_pos.
left; prove_sup0.
replace 0 with (INR 0); [ apply le_INR; apply le_O_n | reflexivity ].
apply INR_fact_neq_0.
apply INR_fact_neq_0.
simpl in |- *; ring.
ring.
assert (H4 := cv_speed_pow_fact a0); unfold Un in |- *; unfold Un_cv in H4;
unfold R_dist in H4; unfold Un_cv in |- *; unfold R_dist in |- *;
intros; elim (H4 eps H5); intros N H6; exists N; intros.
apply H6; unfold ge in |- *; apply le_trans with (2 * S N)%nat.
apply le_trans with (2 * N)%nat.
apply le_n_2n.
apply (fun m n p:nat => mult_le_compat_l p n m); apply le_n_Sn.
apply (fun m n p:nat => mult_le_compat_l p n m); apply le_n_S; assumption.
assert (X := exist_cos (Rsqr a0)); elim X; intros.
cut (x = cos a0).
intro; rewrite H4 in p; unfold cos_in in p; unfold infinite_sum in p;
unfold R_dist in p; unfold Un_cv in |- *; unfold R_dist in |- *;
intros.
elim (p _ H5); intros N H6.
exists N; intros.
replace (sum_f_R0 (tg_alt Un) n1) with
(1 - sum_f_R0 (fun i:nat => cos_n i * Rsqr a0 ^ i) (S n1)).
unfold Rminus in |- *; rewrite Ropp_plus_distr; rewrite Ropp_involutive;
repeat rewrite Rplus_assoc; rewrite (Rplus_comm 1);
rewrite (Rplus_comm (-1)); repeat rewrite Rplus_assoc;
rewrite Rplus_opp_l; rewrite Rplus_0_r; rewrite <- Rabs_Ropp;
rewrite Ropp_plus_distr; rewrite Ropp_involutive;
unfold Rminus in H6; apply H6.
unfold ge in |- *; apply le_trans with n1.
exact H7.
apply le_n_Sn.
rewrite (decomp_sum (fun i:nat => cos_n i * Rsqr a0 ^ i) (S n1)).
replace (cos_n 0) with 1.
simpl in |- *; rewrite Rmult_1_r; unfold Rminus in |- *;
rewrite Ropp_plus_distr; rewrite <- Rplus_assoc; rewrite Rplus_opp_r;
rewrite Rplus_0_l;
replace (- sum_f_R0 (fun i:nat => cos_n (S i) * (Rsqr a0 * Rsqr a0 ^ i)) n1)
with
(-1 * sum_f_R0 (fun i:nat => cos_n (S i) * (Rsqr a0 * Rsqr a0 ^ i)) n1);
[ idtac | ring ]; rewrite scal_sum; apply sum_eq;
intros; unfold cos_n, Un, tg_alt in |- *.
replace ((-1) ^ S i) with (- (-1) ^ i).
replace (a0 ^ (2 * S i)) with (Rsqr a0 * Rsqr a0 ^ i).
unfold Rdiv in |- *; ring.
rewrite pow_Rsqr; reflexivity.
simpl in |- *; ring.
unfold cos_n in |- *; unfold Rdiv in |- *; simpl in |- *; rewrite Rinv_1;
rewrite Rmult_1_r; reflexivity.
apply lt_O_Sn.
unfold cos in |- *; case (exist_cos (Rsqr a0)); intros; unfold cos_in in p;
unfold cos_in in c; eapply uniqueness_sum.
apply p.
apply c.
intros; elim H3; intros; replace (cos a0 - 1) with (- (1 - cos a0));
[ idtac | ring ].
split; apply Ropp_le_contravar; assumption.
replace (- sum_f_R0 (tg_alt Un) (S (2 * n0))) with
(-1 * sum_f_R0 (tg_alt Un) (S (2 * n0))); [ rewrite scal_sum | ring ].
apply sum_eq; intros; unfold cos_term, Un, tg_alt in |- *;
replace ((-1) ^ S i) with (-1 * (-1) ^ i).
unfold Rdiv in |- *; ring.
reflexivity.
replace (- sum_f_R0 (tg_alt Un) (2 * n0)) with
(-1 * sum_f_R0 (tg_alt Un) (2 * n0)); [ rewrite scal_sum | ring ];
apply sum_eq; intros; unfold cos_term, Un, tg_alt in |- *;
replace ((-1) ^ S i) with (-1 * (-1) ^ i).
unfold Rdiv in |- *; ring.
reflexivity.
replace (2 * (n0 + 1))%nat with (S (S (2 * n0))).
reflexivity.
ring.
replace (2 * n0 + 1)%nat with (S (2 * n0)).
reflexivity.
ring.
intro; elim H2; intros; split.
apply Rplus_le_reg_l with (-1).
rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l;
rewrite (Rplus_comm (-1)); apply H3.
apply Rplus_le_reg_l with (-1).
rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l;
rewrite (Rplus_comm (-1)); apply H4.
unfold cos_term in |- *; simpl in |- *; unfold Rdiv in |- *; rewrite Rinv_1;
ring.
replace (2 * (n0 + 1))%nat with (S (S (2 * n0))).
apply lt_O_Sn.
ring.
replace (2 * n0 + 1)%nat with (S (2 * n0)).
apply lt_O_Sn.
ring.
intros; case (total_order_T 0 a); intro.
elim s; intro.
apply H; [ left; assumption | assumption ].
apply H; [ right; assumption | assumption ].
cut (0 < - a).
intro; cut (forall (x:R) (n:nat), cos_approx x n = cos_approx (- x) n).
intro; rewrite H3; rewrite (H3 a (2 * (n + 1))%nat); rewrite cos_sym; apply H.
left; assumption.
rewrite <- (Ropp_involutive (PI / 2)); apply Ropp_le_contravar;
unfold Rdiv in |- *; unfold Rdiv in H0; rewrite <- Ropp_mult_distr_l_reverse;
exact H0.
intros; unfold cos_approx in |- *; apply sum_eq; intros;
unfold cos_term in |- *; do 2 rewrite pow_Rsqr; rewrite Rsqr_neg;
unfold Rdiv in |- *; reflexivity.
apply Ropp_0_gt_lt_contravar; assumption.
Qed.
|