summaryrefslogtreecommitdiff
path: root/theories/Reals/Rtrigo1.v
blob: 6174ef32c6936e1e245577e2bea1f8f6b4e300b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Export Rtrigo_fun.
Require Export Rtrigo_def.
Require Export Rtrigo_alt.
Require Export Cos_rel.
Require Export Cos_plus.
Require Import ZArith_base.
Require Import Zcomplements.
Require Import Classical_Prop.
Require Import Fourier.
Require Import Ranalysis1.
Require Import Rsqrt_def. 
Require Import PSeries_reg.

Local Open Scope nat_scope.
Local Open Scope R_scope.

Lemma CVN_R_cos :
  forall fn:nat -> R -> R,
    fn = (fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N)) * x ^ (2 * N)) ->
    CVN_R fn.
Proof.
  unfold CVN_R in |- *; intros.
  cut ((r:R) <> 0).
  intro hyp_r; unfold CVN_r in |- *.
  exists (fun n:nat => / INR (fact (2 * n)) * r ^ (2 * n)).
  cut
    { l:R |
        Un_cv
        (fun n:nat =>
          sum_f_R0 (fun k:nat => Rabs (/ INR (fact (2 * k)) * r ^ (2 * k)))
          n) l }.
  intro X; elim X; intros.
  exists x.
  split.
  apply p.
  intros; rewrite H; unfold Rdiv in |- *; do 2 rewrite Rabs_mult.
  rewrite pow_1_abs; rewrite Rmult_1_l.
  cut (0 < / INR (fact (2 * n))).
  intro; rewrite (Rabs_right _ (Rle_ge _ _ (Rlt_le _ _ H1))).
  apply Rmult_le_compat_l.
  left; apply H1.
  rewrite <- RPow_abs; apply pow_maj_Rabs.
  rewrite Rabs_Rabsolu.
  unfold Boule in H0; rewrite Rminus_0_r in H0.
  left; apply H0.
  apply Rinv_0_lt_compat; apply INR_fact_lt_0.
  apply Alembert_C2.
  intro; apply Rabs_no_R0.
  apply prod_neq_R0.
  apply Rinv_neq_0_compat.
  apply INR_fact_neq_0.
  apply pow_nonzero; assumption.
  assert (H0 := Alembert_cos).
  unfold cos_n in H0; unfold Un_cv in H0; unfold Un_cv in |- *; intros.
  cut (0 < eps / Rsqr r).
  intro; elim (H0 _ H2); intros N0 H3.
  exists N0; intros.
  unfold R_dist in |- *; assert (H5 := H3 _ H4).
  unfold R_dist in H5;
    replace
    (Rabs
      (Rabs (/ INR (fact (2 * S n)) * r ^ (2 * S n)) /
        Rabs (/ INR (fact (2 * n)) * r ^ (2 * n)))) with
    (Rsqr r *
      Rabs ((-1) ^ S n / INR (fact (2 * S n)) / ((-1) ^ n / INR (fact (2 * n))))).
  apply Rmult_lt_reg_l with (/ Rsqr r).
  apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption.
  pattern (/ Rsqr r) at 1 in |- *; replace (/ Rsqr r) with (Rabs (/ Rsqr r)).
  rewrite <- Rabs_mult; rewrite Rmult_minus_distr_l; rewrite Rmult_0_r;
    rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
  rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); apply H5.
  unfold Rsqr in |- *; apply prod_neq_R0; assumption.
  rewrite Rabs_Rinv.
  rewrite Rabs_right.
  reflexivity.
  apply Rle_ge; apply Rle_0_sqr.
  unfold Rsqr in |- *; apply prod_neq_R0; assumption.
  rewrite (Rmult_comm (Rsqr r)); unfold Rdiv in |- *; repeat rewrite Rabs_mult;
    rewrite Rabs_Rabsolu; rewrite pow_1_abs; rewrite Rmult_1_l;
      repeat rewrite Rmult_assoc; apply Rmult_eq_compat_l.
  rewrite Rabs_Rinv.
  rewrite Rabs_mult; rewrite (pow_1_abs n); rewrite Rmult_1_l;
    rewrite <- Rabs_Rinv.
  rewrite Rinv_involutive.
  rewrite Rinv_mult_distr.
  rewrite Rabs_Rinv.
  rewrite Rinv_involutive.
  rewrite (Rmult_comm (Rabs (Rabs (r ^ (2 * S n))))); rewrite Rabs_mult;
    rewrite Rabs_Rabsolu; rewrite Rmult_assoc; apply Rmult_eq_compat_l.
  rewrite Rabs_Rinv.
  do 2 rewrite Rabs_Rabsolu; repeat rewrite Rabs_right.
  replace (r ^ (2 * S n)) with (r ^ (2 * n) * r * r).
  repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
  unfold Rsqr in |- *; ring.
  apply pow_nonzero; assumption.
  replace (2 * S n)%nat with (S (S (2 * n))).
  simpl in |- *; ring.
  ring.
  apply Rle_ge; apply pow_le; left; apply (cond_pos r).
  apply Rle_ge; apply pow_le; left; apply (cond_pos r).
  apply Rabs_no_R0; apply pow_nonzero; assumption.
  apply Rabs_no_R0; apply INR_fact_neq_0.
  apply INR_fact_neq_0.
  apply Rabs_no_R0; apply Rinv_neq_0_compat; apply INR_fact_neq_0.
  apply Rabs_no_R0; apply pow_nonzero; assumption.
  apply INR_fact_neq_0.
  apply Rinv_neq_0_compat; apply INR_fact_neq_0.
  apply prod_neq_R0.
  apply pow_nonzero; discrR.
  apply Rinv_neq_0_compat; apply INR_fact_neq_0.
  unfold Rdiv in |- *; apply Rmult_lt_0_compat.
  apply H1.
  apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption.
  assert (H0 := cond_pos r); red in |- *; intro; rewrite H1 in H0;
    elim (Rlt_irrefl _ H0).
Qed.

(**********)
Lemma continuity_cos : continuity cos.
Proof.
  set (fn := fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N)) * x ^ (2 * N)).
  cut (CVN_R fn).
  intro; cut (forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }).
  intro cv; cut (forall n:nat, continuity (fn n)).
  intro; cut (forall x:R, cos x = SFL fn cv x).
  intro; cut (continuity (SFL fn cv) -> continuity cos).
  intro; apply H1.
  apply SFL_continuity; assumption.
  unfold continuity in |- *; unfold continuity_pt in |- *;
    unfold continue_in in |- *; unfold limit1_in in |- *;
      unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *;
        intros.
  elim (H1 x _ H2); intros.
  exists x0; intros.
  elim H3; intros.
  split.
  apply H4.
  intros; rewrite (H0 x); rewrite (H0 x1); apply H5; apply H6.
  intro; unfold cos, SFL in |- *.
  case (cv x); case (exist_cos (Rsqr x)); intros.
  symmetry  in |- *; eapply UL_sequence.
  apply u.
  unfold cos_in in c; unfold infinite_sum in c; unfold Un_cv in |- *; intros.
  elim (c _ H0); intros N0 H1.
  exists N0; intros.
  unfold R_dist in H1; unfold R_dist, SP in |- *.
  replace (sum_f_R0 (fun k:nat => fn k x) n) with
  (sum_f_R0 (fun i:nat => cos_n i * Rsqr x ^ i) n).
  apply H1; assumption.
  apply sum_eq; intros.
  unfold cos_n, fn in |- *; apply Rmult_eq_compat_l.
  unfold Rsqr in |- *; rewrite pow_sqr; reflexivity.
  intro; unfold fn in |- *;
    replace (fun x:R => (-1) ^ n / INR (fact (2 * n)) * x ^ (2 * n)) with
    (fct_cte ((-1) ^ n / INR (fact (2 * n))) * pow_fct (2 * n))%F;
    [ idtac | reflexivity ].
  apply continuity_mult.
  apply derivable_continuous; apply derivable_const.
  apply derivable_continuous; apply (derivable_pow (2 * n)).
  apply CVN_R_CVS; apply X.
  apply CVN_R_cos; unfold fn in |- *; reflexivity.
Qed.

Lemma sin_gt_cos_7_8 : sin (7 / 8) > cos (7 / 8).
Proof. 
assert (lo1 : 0 <= 7/8) by fourier.
assert (up1 : 7/8 <= 4) by fourier.
assert (lo : -2 <= 7/8) by fourier.
assert (up : 7/8 <= 2) by fourier.
destruct (pre_sin_bound _ 0 lo1 up1) as [lower _ ].
destruct (pre_cos_bound _ 0 lo up) as [_ upper].
apply Rle_lt_trans with (1 := upper).
apply Rlt_le_trans with (2 := lower).
unfold cos_approx, sin_approx.
simpl sum_f_R0; replace 7 with (IZR 7) by (simpl; field).
replace 8 with (IZR 8) by (simpl; field).
unfold cos_term, sin_term; simpl fact; rewrite !INR_IZR_INZ.
simpl plus; simpl mult.
field_simplify;
  try (repeat apply conj; apply not_eq_sym, Rlt_not_eq, (IZR_lt 0); reflexivity).
unfold Rminus; rewrite !pow_IZR, <- !mult_IZR, <- !opp_IZR, <- ?plus_IZR.
match goal with 
  |- IZR ?a / ?b < ?c / ?d =>
  apply Rmult_lt_reg_r with d;[apply (IZR_lt 0); reflexivity |
    unfold Rdiv at 2; rewrite Rmult_assoc, Rinv_l, Rmult_1_r, Rmult_comm;
     [ |apply not_eq_sym, Rlt_not_eq, (IZR_lt 0); reflexivity ]];
  apply Rmult_lt_reg_r with b;[apply (IZR_lt 0); reflexivity | ]
end.
unfold Rdiv; rewrite !Rmult_assoc, Rinv_l, Rmult_1_r;
 [ | apply not_eq_sym, Rlt_not_eq, (IZR_lt 0); reflexivity].
repeat (rewrite <- !plus_IZR || rewrite <- !mult_IZR).
apply IZR_lt; reflexivity.
Qed.

Definition PI_2_aux : {z | 7/8 <= z <= 7/4 /\ -cos z = 0}.
assert (cc : continuity (fun r =>- cos r)).
 apply continuity_opp, continuity_cos.
assert (cvp : 0 < cos (7/8)).
 assert (int78 : -2 <= 7/8 <= 2) by (split; fourier).
 destruct int78 as [lower upper].
 case (pre_cos_bound _ 0 lower upper).
 unfold cos_approx; simpl sum_f_R0; unfold cos_term.
 intros cl _; apply Rlt_le_trans with (2 := cl); simpl.
 fourier.
assert (cun : cos (7/4) < 0).
 replace (7/4) with (7/8 + 7/8) by field.
 rewrite cos_plus.
 apply Rlt_minus; apply Rsqr_incrst_1.
   exact sin_gt_cos_7_8.
  apply Rlt_le; assumption.
 apply Rlt_le; apply Rlt_trans with (1 := cvp); exact sin_gt_cos_7_8.
apply IVT; auto; fourier.
Qed.

Definition PI2 := proj1_sig PI_2_aux.

Definition PI := 2 * PI2.

Lemma cos_pi2 : cos PI2 = 0.
unfold PI2; case PI_2_aux; simpl.
intros x [_ q]; rewrite <- (Ropp_involutive (cos x)), q; apply Ropp_0.
Qed.

Lemma pi2_int : 7/8 <= PI2 <= 7/4.
unfold PI2; case PI_2_aux; simpl; tauto.
Qed.

(**********)
Lemma cos_minus : forall x y:R, cos (x - y) = cos x * cos y + sin x * sin y.
Proof.
  intros; unfold Rminus in |- *; rewrite cos_plus.
  rewrite <- cos_sym; rewrite sin_antisym; ring.
Qed.

(**********)
Lemma sin2_cos2 : forall x:R, Rsqr (sin x) + Rsqr (cos x) = 1.
Proof.
  intro; unfold Rsqr in |- *; rewrite Rplus_comm; rewrite <- (cos_minus x x);
    unfold Rminus in |- *; rewrite Rplus_opp_r; apply cos_0.
Qed.

Lemma cos2 : forall x:R, Rsqr (cos x) = 1 - Rsqr (sin x).
Proof.
  intros x; rewrite <- (sin2_cos2 x); ring.
Qed.

Lemma sin2 : forall x:R, Rsqr (sin x) = 1 - Rsqr (cos x).
Proof.
  intro x; generalize (cos2 x); intro H1; rewrite H1.
  unfold Rminus in |- *; rewrite Ropp_plus_distr; rewrite <- Rplus_assoc;
    rewrite Rplus_opp_r; rewrite Rplus_0_l; symmetry  in |- *;
      apply Ropp_involutive.
Qed.

(**********)
Lemma cos_PI2 : cos (PI / 2) = 0.
Proof.
 unfold PI; generalize cos_pi2; replace ((2 * PI2)/2) with PI2 by field; tauto.
Qed.

Lemma sin_pos_tech : forall x, 0 < x < 2 -> 0 < sin x. 
intros x [int1 int2].
assert (lo : 0 <= x) by (apply Rlt_le; assumption).
assert (up : x <= 4) by (apply Rlt_le, Rlt_trans with (1:=int2); fourier).
destruct (pre_sin_bound _ 0 lo up) as [t _]; clear lo up.
apply Rlt_le_trans with (2:= t); clear t.
unfold sin_approx; simpl sum_f_R0; unfold sin_term; simpl.
match goal with |- _ < ?a =>
  replace a with (x * (1 - x^2/6)) by (simpl; field)
end.
assert (t' : x ^ 2 <= 4).
 replace 4 with (2 ^ 2) by field.
 apply (pow_incr x 2); split; apply Rlt_le; assumption.
apply Rmult_lt_0_compat;[assumption | fourier ].
Qed.

Lemma sin_PI2 : sin (PI / 2) = 1.
replace (PI / 2) with PI2 by (unfold PI; field).
assert (int' : 0 < PI2 < 2).
 destruct pi2_int; split; fourier.
assert (lo2 := sin_pos_tech PI2 int').
assert (t2 : Rabs (sin PI2) = 1).
 rewrite <- Rabs_R1; apply Rsqr_eq_abs_0.
 rewrite Rsqr_1, sin2, cos_pi2, Rsqr_0, Rminus_0_r; reflexivity.
revert t2; rewrite Rabs_pos_eq;[| apply Rlt_le]; tauto.
Qed.

Lemma PI_RGT_0 : PI > 0.
Proof. unfold PI; destruct pi2_int; fourier. Qed.

Lemma PI_4 : PI <= 4.
Proof. unfold PI; destruct pi2_int; fourier. Qed.

(**********)
Lemma PI_neq0 : PI <> 0.
Proof.
  red in |- *; intro; assert (H0 := PI_RGT_0); rewrite H in H0;
    elim (Rlt_irrefl _ H0).
Qed.


(**********)
Lemma cos_PI : cos PI = -1.
Proof.
  replace PI with (PI / 2 + PI / 2).
  rewrite cos_plus.
  rewrite sin_PI2; rewrite cos_PI2.
  ring.
  symmetry  in |- *; apply double_var.
Qed.

Lemma sin_PI : sin PI = 0.
Proof.
  assert (H := sin2_cos2 PI).
  rewrite cos_PI in H.
  rewrite <- Rsqr_neg in H.
  rewrite Rsqr_1 in H.
  cut (Rsqr (sin PI) = 0).
  intro; apply (Rsqr_eq_0 _ H0).
  apply Rplus_eq_reg_l with 1.
  rewrite Rplus_0_r; rewrite Rplus_comm; exact H.
Qed.

Lemma sin_bound : forall (a : R) (n : nat), 0 <= a -> a <= PI ->
       sin_approx a (2 * n + 1) <= sin a <= sin_approx a (2 * (n + 1)).
Proof.
intros a n a0 api; apply pre_sin_bound.
 assumption.
apply Rle_trans with (1:= api) (2 := PI_4).
Qed.

Lemma cos_bound : forall (a : R) (n : nat), - PI / 2 <= a -> a <= PI / 2 ->
       cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1)).
Proof.
intros a n lower upper; apply pre_cos_bound.
 apply Rle_trans with (2 := lower).
 apply Rmult_le_reg_r with 2; [fourier |].
 replace ((-PI/2) * 2) with (-PI) by field.
 assert (t := PI_4); fourier.
apply Rle_trans with (1 := upper).
apply Rmult_le_reg_r with 2; [fourier | ].
replace ((PI/2) * 2) with PI by field.
generalize PI_4; intros; fourier.
Qed.
(**********)
Lemma neg_cos : forall x:R, cos (x + PI) = - cos x.
Proof.
  intro x; rewrite cos_plus; rewrite sin_PI; rewrite cos_PI; ring.
Qed.

(**********)
Lemma sin_cos : forall x:R, sin x = - cos (PI / 2 + x).
Proof.
  intro x; rewrite cos_plus; rewrite sin_PI2; rewrite cos_PI2; ring.
Qed.

(**********)
Lemma sin_plus : forall x y:R, sin (x + y) = sin x * cos y + cos x * sin y.
Proof.
  intros.
  rewrite (sin_cos (x + y)).
  replace (PI / 2 + (x + y)) with (PI / 2 + x + y); [ rewrite cos_plus | ring ].
  rewrite (sin_cos (PI / 2 + x)).
  replace (PI / 2 + (PI / 2 + x)) with (x + PI).
  rewrite neg_cos.
  replace (cos (PI / 2 + x)) with (- sin x).
  ring.
  rewrite sin_cos; rewrite Ropp_involutive; reflexivity.
  pattern PI at 1 in |- *; rewrite (double_var PI); ring.
Qed.

Lemma sin_minus : forall x y:R, sin (x - y) = sin x * cos y - cos x * sin y.
Proof.
  intros; unfold Rminus in |- *; rewrite sin_plus.
  rewrite <- cos_sym; rewrite sin_antisym; ring.
Qed.

(**********)
Definition tan (x:R) : R := sin x / cos x.

Lemma tan_plus :
  forall x y:R,
    cos x <> 0 ->
    cos y <> 0 ->
    cos (x + y) <> 0 ->
    1 - tan x * tan y <> 0 ->
    tan (x + y) = (tan x + tan y) / (1 - tan x * tan y).
Proof.
  intros; unfold tan in |- *; rewrite sin_plus; rewrite cos_plus;
    unfold Rdiv in |- *;
      replace (cos x * cos y - sin x * sin y) with
      (cos x * cos y * (1 - sin x * / cos x * (sin y * / cos y))).
  rewrite Rinv_mult_distr.
  repeat rewrite <- Rmult_assoc;
    replace ((sin x * cos y + cos x * sin y) * / (cos x * cos y)) with
    (sin x * / cos x + sin y * / cos y).
  reflexivity.
  rewrite Rmult_plus_distr_r; rewrite Rinv_mult_distr.
  repeat rewrite Rmult_assoc; repeat rewrite (Rmult_comm (sin x));
    repeat rewrite <- Rmult_assoc.
  repeat rewrite Rinv_r_simpl_m; [ reflexivity | assumption | assumption ].
  assumption.
  assumption.
  apply prod_neq_R0; assumption.
  assumption.
  unfold Rminus in |- *; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r;
    apply Rplus_eq_compat_l; repeat rewrite Rmult_assoc;
      rewrite (Rmult_comm (sin x)); rewrite (Rmult_comm (cos y));
        rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite <- Rmult_assoc;
          rewrite <- Rinv_r_sym.
  rewrite Rmult_1_l; rewrite (Rmult_comm (sin x));
    rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite Rmult_assoc;
      apply Rmult_eq_compat_l; rewrite (Rmult_comm (/ cos y));
        rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
  apply Rmult_1_r.
  assumption.
  assumption.
Qed.

(*******************************************************)
(** * Some properties of cos, sin and tan              *)
(*******************************************************)

Lemma sin_2a : forall x:R, sin (2 * x) = 2 * sin x * cos x.
Proof.
  intro x; rewrite double; rewrite sin_plus.
  rewrite <- (Rmult_comm (sin x)); symmetry  in |- *; rewrite Rmult_assoc;
    apply double.
Qed.

Lemma cos_2a : forall x:R, cos (2 * x) = cos x * cos x - sin x * sin x.
Proof.
  intro x; rewrite double; apply cos_plus.
Qed.

Lemma cos_2a_cos : forall x:R, cos (2 * x) = 2 * cos x * cos x - 1.
Proof.
  intro x; rewrite double; unfold Rminus in |- *; rewrite Rmult_assoc;
    rewrite cos_plus; generalize (sin2_cos2 x); rewrite double;
      intro H1; rewrite <- H1; ring_Rsqr.
Qed.

Lemma cos_2a_sin : forall x:R, cos (2 * x) = 1 - 2 * sin x * sin x.
Proof.
  intro x; rewrite Rmult_assoc; unfold Rminus in |- *; repeat rewrite double.
  generalize (sin2_cos2 x); intro H1; rewrite <- H1; rewrite cos_plus;
    ring_Rsqr.
Qed.

Lemma tan_2a :
  forall x:R,
    cos x <> 0 ->
    cos (2 * x) <> 0 ->
    1 - tan x * tan x <> 0 -> tan (2 * x) = 2 * tan x / (1 - tan x * tan x).
Proof.
  repeat rewrite double; intros; repeat rewrite double; rewrite double in H0;
    apply tan_plus; assumption.
Qed.

Lemma sin_neg : forall x:R, sin (- x) = - sin x.
Proof.
  apply sin_antisym.
Qed.

Lemma cos_neg : forall x:R, cos (- x) = cos x.
Proof.
  intro; symmetry  in |- *; apply cos_sym.
Qed.

Lemma tan_0 : tan 0 = 0.
Proof.
  unfold tan in |- *; rewrite sin_0; rewrite cos_0.
  unfold Rdiv in |- *; apply Rmult_0_l.
Qed.

Lemma tan_neg : forall x:R, tan (- x) = - tan x.
Proof.
  intros x; unfold tan in |- *; rewrite sin_neg; rewrite cos_neg;
    unfold Rdiv in |- *.
  apply Ropp_mult_distr_l_reverse.
Qed.

Lemma tan_minus :
  forall x y:R,
    cos x <> 0 ->
    cos y <> 0 ->
    cos (x - y) <> 0 ->
    1 + tan x * tan y <> 0 ->
    tan (x - y) = (tan x - tan y) / (1 + tan x * tan y).
Proof.
  intros; unfold Rminus in |- *; rewrite tan_plus.
  rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse;
    rewrite Rmult_opp_opp; reflexivity.
  assumption.
  rewrite cos_neg; assumption.
  assumption.
  rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse;
    rewrite Rmult_opp_opp; assumption.
Qed.

Lemma cos_3PI2 : cos (3 * (PI / 2)) = 0.
Proof.
  replace (3 * (PI / 2)) with (PI + PI / 2).
  rewrite cos_plus; rewrite sin_PI; rewrite cos_PI2; ring.
  pattern PI at 1 in |- *; rewrite (double_var PI).
  ring.
Qed.

Lemma sin_2PI : sin (2 * PI) = 0.
Proof.
  rewrite sin_2a; rewrite sin_PI; ring.
Qed.

Lemma cos_2PI : cos (2 * PI) = 1.
Proof.
  rewrite cos_2a; rewrite sin_PI; rewrite cos_PI; ring.
Qed.

Lemma neg_sin : forall x:R, sin (x + PI) = - sin x.
Proof.
  intro x; rewrite sin_plus; rewrite sin_PI; rewrite cos_PI; ring.
Qed.

Lemma sin_PI_x : forall x:R, sin (PI - x) = sin x.
Proof.
  intro x; rewrite sin_minus; rewrite sin_PI; rewrite cos_PI; rewrite Rmult_0_l;
    unfold Rminus in |- *; rewrite Rplus_0_l; rewrite Ropp_mult_distr_l_reverse;
      rewrite Ropp_involutive; apply Rmult_1_l.
Qed.

Lemma sin_period : forall (x:R) (k:nat), sin (x + 2 * INR k * PI) = sin x.
Proof.
  intros x k; induction  k as [| k Hreck].
  simpl in |- *;  ring_simplify (x + 2 * 0 * PI).
  trivial.

  replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI).
  rewrite sin_plus in |- *; rewrite sin_2PI in |- *; rewrite cos_2PI in |- *.
  ring_simplify; trivial.
  rewrite S_INR in |- *;  ring.
Qed.

Lemma cos_period : forall (x:R) (k:nat), cos (x + 2 * INR k * PI) = cos x.
Proof.
  intros x k; induction  k as [| k Hreck].
  simpl in |- *;  ring_simplify (x + 2 * 0 * PI).
  trivial.

  replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI).
  rewrite cos_plus in |- *; rewrite sin_2PI in |- *; rewrite cos_2PI in |- *.
  ring_simplify; trivial.
  rewrite S_INR in |- *;  ring.
Qed.

Lemma sin_shift : forall x:R, sin (PI / 2 - x) = cos x.
Proof.
  intro x; rewrite sin_minus; rewrite sin_PI2; rewrite cos_PI2; ring.
Qed.

Lemma cos_shift : forall x:R, cos (PI / 2 - x) = sin x.
Proof.
  intro x; rewrite cos_minus; rewrite sin_PI2; rewrite cos_PI2; ring.
Qed.

Lemma cos_sin : forall x:R, cos x = sin (PI / 2 + x).
Proof.
  intro x; rewrite sin_plus; rewrite sin_PI2; rewrite cos_PI2; ring.
Qed.

Lemma PI2_RGT_0 : 0 < PI / 2.
Proof.
  unfold Rdiv in |- *; apply Rmult_lt_0_compat;
    [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup ].
Qed.

Lemma SIN_bound : forall x:R, -1 <= sin x <= 1.
Proof.
  intro; case (Rle_dec (-1) (sin x)); intro.
  case (Rle_dec (sin x) 1); intro.
  split; assumption.
  cut (1 < sin x).
  intro;
    generalize
      (Rsqr_incrst_1 1 (sin x) H (Rlt_le 0 1 Rlt_0_1)
        (Rlt_le 0 (sin x) (Rlt_trans 0 1 (sin x) Rlt_0_1 H)));
      rewrite Rsqr_1; intro; rewrite sin2 in H0; unfold Rminus in H0;
        generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0);
          repeat rewrite <- Rplus_assoc; repeat rewrite Rplus_opp_l;
            rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1;
              generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1);
                repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x));
                  intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)).
  auto with real.
  cut (sin x < -1).
  intro; generalize (Ropp_lt_gt_contravar (sin x) (-1) H);
    rewrite Ropp_involutive; clear H; intro;
      generalize
        (Rsqr_incrst_1 1 (- sin x) H (Rlt_le 0 1 Rlt_0_1)
          (Rlt_le 0 (- sin x) (Rlt_trans 0 1 (- sin x) Rlt_0_1 H)));
        rewrite Rsqr_1; intro; rewrite <- Rsqr_neg in H0;
          rewrite sin2 in H0; unfold Rminus in H0;
            generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0);
              repeat rewrite <- Rplus_assoc; repeat rewrite Rplus_opp_l;
                rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1;
                  generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1);
                    repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x));
                      intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)).
  auto with real.
Qed.

Lemma COS_bound : forall x:R, -1 <= cos x <= 1.
Proof.
  intro; rewrite <- sin_shift; apply SIN_bound.
Qed.

Lemma cos_sin_0 : forall x:R, ~ (cos x = 0 /\ sin x = 0).
Proof.
  intro; red in |- *; intro; elim H; intros; generalize (sin2_cos2 x); intro;
    rewrite H0 in H2; rewrite H1 in H2; repeat rewrite Rsqr_0 in H2;
      rewrite Rplus_0_r in H2; generalize Rlt_0_1; intro;
        rewrite <- H2 in H3; elim (Rlt_irrefl 0 H3).
Qed.

Lemma cos_sin_0_var : forall x:R, cos x <> 0 \/ sin x <> 0.
Proof.
  intros x.
  destruct (Req_dec (cos x) 0). 2: now left.
  right. intros H'.
  apply (cos_sin_0 x).
  now split.
Qed.

(*****************************************************************)
(** * Using series definitions of cos and sin                    *)
(*****************************************************************)

Definition sin_lb (a:R) : R := sin_approx a 3.
Definition sin_ub (a:R) : R := sin_approx a 4.
Definition cos_lb (a:R) : R := cos_approx a 3.
Definition cos_ub (a:R) : R := cos_approx a 4.

Lemma sin_lb_gt_0 : forall a:R, 0 < a -> a <= PI / 2 -> 0 < sin_lb a.
Proof.
  intros.
  unfold sin_lb in |- *; unfold sin_approx in |- *; unfold sin_term in |- *.
  set (Un := fun i:nat => a ^ (2 * i + 1) / INR (fact (2 * i + 1))).
  replace
  (sum_f_R0
    (fun i:nat => (-1) ^ i * (a ^ (2 * i + 1) / INR (fact (2 * i + 1)))) 3)
    with (sum_f_R0 (fun i:nat => (-1) ^ i * Un i) 3);
      [ idtac | apply sum_eq; intros; unfold Un in |- *; reflexivity ].
  cut (forall n:nat, Un (S n) < Un n).
  intro; simpl in |- *.
  repeat rewrite Rmult_1_l; repeat rewrite Rmult_1_r;
    replace (-1 * Un 1%nat) with (- Un 1%nat); [ idtac | ring ];
    replace (-1 * -1 * Un 2%nat) with (Un 2%nat); [ idtac | ring ];
    replace (-1 * (-1 * -1) * Un 3%nat) with (- Un 3%nat);
    [ idtac | ring ];
    replace (Un 0%nat + - Un 1%nat + Un 2%nat + - Un 3%nat) with
    (Un 0%nat - Un 1%nat + (Un 2%nat - Un 3%nat)); [ idtac | ring ].
  apply Rplus_lt_0_compat.
  unfold Rminus in |- *; apply Rplus_lt_reg_r with (Un 1%nat);
    rewrite Rplus_0_r; rewrite (Rplus_comm (Un 1%nat));
      rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r;
        apply H1.
  unfold Rminus in |- *; apply Rplus_lt_reg_r with (Un 3%nat);
    rewrite Rplus_0_r; rewrite (Rplus_comm (Un 3%nat));
      rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r;
        apply H1.
  intro; unfold Un in |- *.
  cut ((2 * S n + 1)%nat = (2 * n + 1 + 2)%nat).
  intro; rewrite H1.
  rewrite pow_add; unfold Rdiv in |- *; rewrite Rmult_assoc;
    apply Rmult_lt_compat_l.
  apply pow_lt; assumption.
  rewrite <- H1; apply Rmult_lt_reg_l with (INR (fact (2 * n + 1))).
  apply lt_INR_0; apply neq_O_lt.
  assert (H2 := fact_neq_0 (2 * n + 1)).
  red in |- *; intro; elim H2; symmetry  in |- *; assumption.
  rewrite <- Rinv_r_sym.
  apply Rmult_lt_reg_l with (INR (fact (2 * S n + 1))).
  apply lt_INR_0; apply neq_O_lt.
  assert (H2 := fact_neq_0 (2 * S n + 1)).
  red in |- *; intro; elim H2; symmetry  in |- *; assumption.
  rewrite (Rmult_comm (INR (fact (2 * S n + 1)))); repeat rewrite Rmult_assoc;
    rewrite <- Rinv_l_sym.
  do 2 rewrite Rmult_1_r; apply Rle_lt_trans with (INR (fact (2 * n + 1)) * 4).
  apply Rmult_le_compat_l.
  replace 0 with (INR 0); [ idtac | reflexivity ]; apply le_INR; apply le_O_n.
  simpl in |- *; rewrite Rmult_1_r; replace 4 with (Rsqr 2);
    [ idtac | ring_Rsqr ]; replace (a * a) with (Rsqr a);
    [ idtac | reflexivity ]; apply Rsqr_incr_1.
  apply Rle_trans with (PI / 2);
    [ assumption
      | unfold Rdiv in |- *; apply Rmult_le_reg_l with 2;
        [ prove_sup0
          | rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m;
            [ replace 4 with 4; [ apply PI_4 | ring ] | discrR ] ] ].
  left; assumption.
  left; prove_sup0.
  rewrite H1; replace (2 * n + 1 + 2)%nat with (S (S (2 * n + 1))).
  do 2 rewrite fact_simpl; do 2 rewrite mult_INR.
  repeat rewrite <- Rmult_assoc.
  rewrite <- (Rmult_comm (INR (fact (2 * n + 1)))).
  rewrite Rmult_assoc.
  apply Rmult_lt_compat_l.
  apply lt_INR_0; apply neq_O_lt.
  assert (H2 := fact_neq_0 (2 * n + 1)).
  red in |- *; intro; elim H2; symmetry  in |- *; assumption.
  do 2 rewrite S_INR; rewrite plus_INR; rewrite mult_INR; set (x := INR n);
    unfold INR in |- *.
  replace ((2 * x + 1 + 1 + 1) * (2 * x + 1 + 1)) with (4 * x * x + 10 * x + 6);
  [ idtac | ring ].
  apply Rplus_lt_reg_r with (-4); rewrite Rplus_opp_l;
    replace (-4 + (4 * x * x + 10 * x + 6)) with (4 * x * x + 10 * x + 2);
    [ idtac | ring ].
  apply Rplus_le_lt_0_compat.
  cut (0 <= x).
  intro; apply Rplus_le_le_0_compat; repeat apply Rmult_le_pos;
    assumption || left; prove_sup.
  unfold x in |- *; replace 0 with (INR 0);
    [ apply le_INR; apply le_O_n | reflexivity ].
  prove_sup0.
  ring.
  apply INR_fact_neq_0.
  apply INR_fact_neq_0.
  ring.
Qed.

Lemma SIN : forall a:R, 0 <= a -> a <= PI -> sin_lb a <= sin a <= sin_ub a.
  intros; unfold sin_lb, sin_ub in |- *; apply (sin_bound a 1 H H0).
Qed.

Lemma COS :
  forall a:R, - PI / 2 <= a -> a <= PI / 2 -> cos_lb a <= cos a <= cos_ub a.
  intros; unfold cos_lb, cos_ub in |- *; apply (cos_bound a 1 H H0).
Qed.

(**********)
Lemma _PI2_RLT_0 : - (PI / 2) < 0.
Proof.
  rewrite <- Ropp_0; apply Ropp_lt_contravar; apply PI2_RGT_0.
Qed.

Lemma PI4_RLT_PI2 : PI / 4 < PI / 2.
Proof.
  unfold Rdiv in |- *; apply Rmult_lt_compat_l.
  apply PI_RGT_0.
  apply Rinv_lt_contravar.
  apply Rmult_lt_0_compat; prove_sup0.
  pattern 2 at 1 in |- *; rewrite <- Rplus_0_r.
  replace 4 with (2 + 2); [ apply Rplus_lt_compat_l; prove_sup0 | ring ].
Qed.

Lemma PI2_Rlt_PI : PI / 2 < PI.
Proof.
  unfold Rdiv in |- *; pattern PI at 2 in |- *; rewrite <- Rmult_1_r.
  apply Rmult_lt_compat_l.
  apply PI_RGT_0.
  pattern 1 at 3 in |- *; rewrite <- Rinv_1; apply Rinv_lt_contravar.
  rewrite Rmult_1_l; prove_sup0.
  pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
    apply Rlt_0_1.
Qed.

(***************************************************)
(** * Increasing and decreasing of [cos] and [sin] *)
(***************************************************)
Theorem sin_gt_0 : forall x:R, 0 < x -> x < PI -> 0 < sin x.
Proof.
  intros; elim (SIN x (Rlt_le 0 x H) (Rlt_le x PI H0)); intros H1 _;
    case (Rtotal_order x (PI / 2)); intro H2.
  apply Rlt_le_trans with (sin_lb x).
  apply sin_lb_gt_0; [ assumption | left; assumption ].
  assumption.
  elim H2; intro H3.
  rewrite H3; rewrite sin_PI2; apply Rlt_0_1.
  rewrite <- sin_PI_x; generalize (Ropp_gt_lt_contravar x (PI / 2) H3);
    intro H4; generalize (Rplus_lt_compat_l PI (- x) (- (PI / 2)) H4).
  replace (PI + - x) with (PI - x).
  replace (PI + - (PI / 2)) with (PI / 2).
  intro H5; generalize (Ropp_lt_gt_contravar x PI H0); intro H6;
    change (- PI < - x) in H6; generalize (Rplus_lt_compat_l PI (- PI) (- x) H6).
  rewrite Rplus_opp_r.
  replace (PI + - x) with (PI - x).
  intro H7;
    elim
      (SIN (PI - x) (Rlt_le 0 (PI - x) H7)
        (Rlt_le (PI - x) PI (Rlt_trans (PI - x) (PI / 2) PI H5 PI2_Rlt_PI)));
      intros H8 _;
        generalize (sin_lb_gt_0 (PI - x) H7 (Rlt_le (PI - x) (PI / 2) H5));
          intro H9; apply (Rlt_le_trans 0 (sin_lb (PI - x)) (sin (PI - x)) H9 H8).
  reflexivity.
  pattern PI at 2 in |- *; rewrite double_var; ring.
  reflexivity.
Qed.

Theorem cos_gt_0 : forall x:R, - (PI / 2) < x -> x < PI / 2 -> 0 < cos x.
Proof.
  intros; rewrite cos_sin;
    generalize (Rplus_lt_compat_l (PI / 2) (- (PI / 2)) x H).
  rewrite Rplus_opp_r; intro H1;
    generalize (Rplus_lt_compat_l (PI / 2) x (PI / 2) H0);
      rewrite <- double_var; intro H2; apply (sin_gt_0 (PI / 2 + x) H1 H2).
Qed.

Lemma sin_ge_0 : forall x:R, 0 <= x -> x <= PI -> 0 <= sin x.
Proof.
  intros x H1 H2; elim H1; intro H3;
    [ elim H2; intro H4;
      [ left; apply (sin_gt_0 x H3 H4)
        | rewrite H4; right; symmetry  in |- *; apply sin_PI ]
      | rewrite <- H3; right; symmetry  in |- *; apply sin_0 ].
Qed.

Lemma cos_ge_0 : forall x:R, - (PI / 2) <= x -> x <= PI / 2 -> 0 <= cos x.
Proof.
  intros x H1 H2; elim H1; intro H3;
    [ elim H2; intro H4;
      [ left; apply (cos_gt_0 x H3 H4)
        | rewrite H4; right; symmetry  in |- *; apply cos_PI2 ]
      | rewrite <- H3; rewrite cos_neg; right; symmetry  in |- *; apply cos_PI2 ].
Qed.

Lemma sin_le_0 : forall x:R, PI <= x -> x <= 2 * PI -> sin x <= 0.
Proof.
  intros x H1 H2; apply Rge_le; rewrite <- Ropp_0;
    rewrite <- (Ropp_involutive (sin x)); apply Ropp_le_ge_contravar;
      rewrite <- neg_sin; replace (x + PI) with (x - PI + 2 * INR 1 * PI);
        [ rewrite (sin_period (x - PI) 1); apply sin_ge_0;
          [ replace (x - PI) with (x + - PI);
            [ rewrite Rplus_comm; replace 0 with (- PI + PI);
              [ apply Rplus_le_compat_l; assumption | ring ]
              | ring ]
            | replace (x - PI) with (x + - PI); rewrite Rplus_comm;
              [ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI);
                [ apply Rplus_le_compat_l; assumption | ring ]
                | ring ] ]
          | unfold INR in |- *; ring ].
Qed.

Lemma cos_le_0 : forall x:R, PI / 2 <= x -> x <= 3 * (PI / 2) -> cos x <= 0.
Proof.
  intros x H1 H2; apply Rge_le; rewrite <- Ropp_0;
    rewrite <- (Ropp_involutive (cos x)); apply Ropp_le_ge_contravar;
      rewrite <- neg_cos; replace (x + PI) with (x - PI + 2 * INR 1 * PI).
  rewrite cos_period; apply cos_ge_0.
  replace (- (PI / 2)) with (- PI + PI / 2).
  unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_le_compat_l;
    assumption.
  pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr;
    ring.
  unfold Rminus in |- *; rewrite Rplus_comm;
    replace (PI / 2) with (- PI + 3 * (PI / 2)).
  apply Rplus_le_compat_l; assumption.
  pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr;
    ring.
  unfold INR in |- *; ring.
Qed.

Lemma sin_lt_0 : forall x:R, PI < x -> x < 2 * PI -> sin x < 0.
Proof.
  intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (sin x));
    apply Ropp_lt_gt_contravar; rewrite <- neg_sin;
      replace (x + PI) with (x - PI + 2 * INR 1 * PI);
      [ rewrite (sin_period (x - PI) 1); apply sin_gt_0;
        [ replace (x - PI) with (x + - PI);
          [ rewrite Rplus_comm; replace 0 with (- PI + PI);
            [ apply Rplus_lt_compat_l; assumption | ring ]
            | ring ]
          | replace (x - PI) with (x + - PI); rewrite Rplus_comm;
            [ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI);
              [ apply Rplus_lt_compat_l; assumption | ring ]
              | ring ] ]
        | unfold INR in |- *; ring ].
Qed.

Lemma sin_lt_0_var : forall x:R, - PI < x -> x < 0 -> sin x < 0.
Proof.
  intros; generalize (Rplus_lt_compat_l (2 * PI) (- PI) x H);
    replace (2 * PI + - PI) with PI;
    [ intro H1; rewrite Rplus_comm in H1;
      generalize (Rplus_lt_compat_l (2 * PI) x 0 H0);
        intro H2; rewrite (Rplus_comm (2 * PI)) in H2;
          rewrite <- (Rplus_comm 0) in H2; rewrite Rplus_0_l in H2;
            rewrite <- (sin_period x 1); unfold INR in |- *;
              replace (2 * 1 * PI) with (2 * PI);
              [ apply (sin_lt_0 (x + 2 * PI) H1 H2) | ring ]
      | ring ].
Qed.

Lemma cos_lt_0 : forall x:R, PI / 2 < x -> x < 3 * (PI / 2) -> cos x < 0.
Proof.
  intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (cos x));
    apply Ropp_lt_gt_contravar; rewrite <- neg_cos;
      replace (x + PI) with (x - PI + 2 * INR 1 * PI).
  rewrite cos_period; apply cos_gt_0.
  replace (- (PI / 2)) with (- PI + PI / 2).
  unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_lt_compat_l;
    assumption.
  pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr;
    ring.
  unfold Rminus in |- *; rewrite Rplus_comm;
    replace (PI / 2) with (- PI + 3 * (PI / 2)).
  apply Rplus_lt_compat_l; assumption.
  pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr;
    ring.
  unfold INR in |- *; ring.
Qed.

Lemma tan_gt_0 : forall x:R, 0 < x -> x < PI / 2 -> 0 < tan x.
Proof.
  intros x H1 H2; unfold tan in |- *; generalize _PI2_RLT_0;
    generalize (Rlt_trans 0 x (PI / 2) H1 H2); intros;
      generalize (Rlt_trans (- (PI / 2)) 0 x H0 H1); intro H5;
        generalize (Rlt_trans x (PI / 2) PI H2 PI2_Rlt_PI);
          intro H7; unfold Rdiv in |- *; apply Rmult_lt_0_compat.
  apply sin_gt_0; assumption.
  apply Rinv_0_lt_compat; apply cos_gt_0; assumption.
Qed.

Lemma tan_lt_0 : forall x:R, - (PI / 2) < x -> x < 0 -> tan x < 0.
Proof.
  intros x H1 H2; unfold tan in |- *;
    generalize (cos_gt_0 x H1 (Rlt_trans x 0 (PI / 2) H2 PI2_RGT_0));
      intro H3; rewrite <- Ropp_0;
        replace (sin x / cos x) with (- (- sin x / cos x)).
  rewrite <- sin_neg; apply Ropp_gt_lt_contravar;
    change (0 < sin (- x) / cos x) in |- *; unfold Rdiv in |- *;
      apply Rmult_lt_0_compat.
  apply sin_gt_0.
  rewrite <- Ropp_0; apply Ropp_gt_lt_contravar; assumption.
  apply Rlt_trans with (PI / 2).
  rewrite <- (Ropp_involutive (PI / 2)); apply Ropp_gt_lt_contravar; assumption.
  apply PI2_Rlt_PI.
  apply Rinv_0_lt_compat; assumption.
  unfold Rdiv in |- *; ring.
Qed.

Lemma cos_ge_0_3PI2 :
  forall x:R, 3 * (PI / 2) <= x -> x <= 2 * PI -> 0 <= cos x.
Proof.
  intros; rewrite <- cos_neg; rewrite <- (cos_period (- x) 1);
    unfold INR in |- *; replace (- x + 2 * 1 * PI) with (2 * PI - x).
  generalize (Ropp_le_ge_contravar x (2 * PI) H0); intro H1;
    generalize (Rge_le (- x) (- (2 * PI)) H1); clear H1;
      intro H1; generalize (Rplus_le_compat_l (2 * PI) (- (2 * PI)) (- x) H1).
  rewrite Rplus_opp_r.
  intro H2; generalize (Ropp_le_ge_contravar (3 * (PI / 2)) x H); intro H3;
    generalize (Rge_le (- (3 * (PI / 2))) (- x) H3); clear H3;
      intro H3;
        generalize (Rplus_le_compat_l (2 * PI) (- x) (- (3 * (PI / 2))) H3).
  replace (2 * PI + - (3 * (PI / 2))) with (PI / 2).
  intro H4;
    apply
      (cos_ge_0 (2 * PI - x)
        (Rlt_le (- (PI / 2)) (2 * PI - x)
          (Rlt_le_trans (- (PI / 2)) 0 (2 * PI - x) _PI2_RLT_0 H2)) H4).
  rewrite double; pattern PI at 2 3 in |- *; rewrite double_var; ring.
  ring.
Qed.

Lemma form1 :
  forall p q:R, cos p + cos q = 2 * cos ((p - q) / 2) * cos ((p + q) / 2).
Proof.
  intros p q; pattern p at 1 in |- *;
    replace p with ((p - q) / 2 + (p + q) / 2).
  rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2).
  rewrite cos_plus; rewrite cos_minus; ring.
  pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
  pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
Qed.

Lemma form2 :
  forall p q:R, cos p - cos q = -2 * sin ((p - q) / 2) * sin ((p + q) / 2).
Proof.
  intros p q; pattern p at 1 in |- *;
    replace p with ((p - q) / 2 + (p + q) / 2).
  rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2).
  rewrite cos_plus; rewrite cos_minus; ring.
  pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
  pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
Qed.

Lemma form3 :
  forall p q:R, sin p + sin q = 2 * cos ((p - q) / 2) * sin ((p + q) / 2).
Proof.
  intros p q; pattern p at 1 in |- *;
    replace p with ((p - q) / 2 + (p + q) / 2).
  pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2).
  rewrite sin_plus; rewrite sin_minus; ring.
  pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
  pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
Qed.

Lemma form4 :
  forall p q:R, sin p - sin q = 2 * cos ((p + q) / 2) * sin ((p - q) / 2).
Proof.
  intros p q; pattern p at 1 in |- *;
    replace p with ((p - q) / 2 + (p + q) / 2).
  pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2).
  rewrite sin_plus; rewrite sin_minus; ring.
  pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
  pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.

Qed.

Lemma sin_increasing_0 :
  forall x y:R,
    - (PI / 2) <= x ->
    x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x < sin y -> x < y.
Proof.
  intros; cut (sin ((x - y) / 2) < 0).
  intro H4; case (Rtotal_order ((x - y) / 2) 0); intro H5.
  assert (Hyp : 0 < 2).
  prove_sup0.
  generalize (Rmult_lt_compat_l 2 ((x - y) / 2) 0 Hyp H5).
  unfold Rdiv in |- *.
  rewrite <- Rmult_assoc.
  rewrite Rinv_r_simpl_m.
  rewrite Rmult_0_r.
  clear H5; intro H5; apply Rminus_lt; assumption.
  discrR.
  elim H5; intro H6.
  rewrite H6 in H4; rewrite sin_0 in H4; elim (Rlt_irrefl 0 H4).
  change (0 < (x - y) / 2) in H6;
    generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1).
  rewrite Ropp_involutive.
  intro H7; generalize (Rge_le (PI / 2) (- y) H7); clear H7; intro H7;
    generalize (Rplus_le_compat x (PI / 2) (- y) (PI / 2) H0 H7).
  rewrite <- double_var.
  intro H8.
  assert (Hyp : 0 < 2).
  prove_sup0.
  generalize
    (Rmult_le_compat_l (/ 2) (x - y) PI
      (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H8).
  repeat rewrite (Rmult_comm (/ 2)).
  intro H9;
    generalize
      (sin_gt_0 ((x - y) / 2) H6
        (Rle_lt_trans ((x - y) / 2) (PI / 2) PI H9 PI2_Rlt_PI));
      intro H10;
        elim
          (Rlt_irrefl (sin ((x - y) / 2))
            (Rlt_trans (sin ((x - y) / 2)) 0 (sin ((x - y) / 2)) H4 H10)).
  generalize (Rlt_minus (sin x) (sin y) H3); clear H3; intro H3;
    rewrite form4 in H3;
      generalize (Rplus_le_compat x (PI / 2) y (PI / 2) H0 H2).
  rewrite <- double_var.
  assert (Hyp : 0 < 2).
  prove_sup0.
  intro H4;
    generalize
      (Rmult_le_compat_l (/ 2) (x + y) PI
        (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H4).
  repeat rewrite (Rmult_comm (/ 2)).
  clear H4; intro H4;
    generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) y H H1);
      replace (- (PI / 2) + - (PI / 2)) with (- PI).
  intro H5;
    generalize
      (Rmult_le_compat_l (/ 2) (- PI) (x + y)
        (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H5).
  replace (/ 2 * (x + y)) with ((x + y) / 2).
  replace (/ 2 * - PI) with (- (PI / 2)).
  clear H5; intro H5; elim H4; intro H40.
  elim H5; intro H50.
  generalize (cos_gt_0 ((x + y) / 2) H50 H40); intro H6;
    generalize (Rmult_lt_compat_l 2 0 (cos ((x + y) / 2)) Hyp H6).
  rewrite Rmult_0_r.
  clear H6; intro H6; case (Rcase_abs (sin ((x - y) / 2))); intro H7.
  assumption.
  generalize (Rge_le (sin ((x - y) / 2)) 0 H7); clear H7; intro H7;
    generalize
      (Rmult_le_pos (2 * cos ((x + y) / 2)) (sin ((x - y) / 2))
        (Rlt_le 0 (2 * cos ((x + y) / 2)) H6) H7); intro H8;
      generalize
        (Rle_lt_trans 0 (2 * cos ((x + y) / 2) * sin ((x - y) / 2)) 0 H8 H3);
        intro H9; elim (Rlt_irrefl 0 H9).
  rewrite <- H50 in H3; rewrite cos_neg in H3; rewrite cos_PI2 in H3;
    rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3;
      elim (Rlt_irrefl 0 H3).
  unfold Rdiv in H3.
  rewrite H40 in H3; assert (H50 := cos_PI2); unfold Rdiv in H50;
    rewrite H50 in H3; rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3;
      elim (Rlt_irrefl 0 H3).
  unfold Rdiv in |- *.
  rewrite <- Ropp_mult_distr_l_reverse.
  apply Rmult_comm.
  unfold Rdiv in |- *; apply Rmult_comm.
  pattern PI at 1 in |- *; rewrite double_var.
  rewrite Ropp_plus_distr.
  reflexivity.
Qed.

Lemma sin_increasing_1 :
  forall x y:R,
    - (PI / 2) <= x ->
    x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x < y -> sin x < sin y.
Proof.
  intros; generalize (Rplus_lt_compat_l x x y H3); intro H4;
    generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) x H H);
      replace (- (PI / 2) + - (PI / 2)) with (- PI).
  assert (Hyp : 0 < 2).
  prove_sup0.
  intro H5; generalize (Rle_lt_trans (- PI) (x + x) (x + y) H5 H4); intro H6;
    generalize
      (Rmult_lt_compat_l (/ 2) (- PI) (x + y) (Rinv_0_lt_compat 2 Hyp) H6);
      replace (/ 2 * - PI) with (- (PI / 2)).
  replace (/ 2 * (x + y)) with ((x + y) / 2).
  clear H4 H5 H6; intro H4; generalize (Rplus_lt_compat_l y x y H3); intro H5;
    rewrite Rplus_comm in H5;
      generalize (Rplus_le_compat y (PI / 2) y (PI / 2) H2 H2).
  rewrite <- double_var.
  intro H6; generalize (Rlt_le_trans (x + y) (y + y) PI H5 H6); intro H7;
    generalize (Rmult_lt_compat_l (/ 2) (x + y) PI (Rinv_0_lt_compat 2 Hyp) H7);
      replace (/ 2 * PI) with (PI / 2).
  replace (/ 2 * (x + y)) with ((x + y) / 2).
  clear H5 H6 H7; intro H5; generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1);
    rewrite Ropp_involutive; clear H1; intro H1;
      generalize (Rge_le (PI / 2) (- y) H1); clear H1; intro H1;
        generalize (Ropp_le_ge_contravar y (PI / 2) H2); clear H2;
          intro H2; generalize (Rge_le (- y) (- (PI / 2)) H2);
            clear H2; intro H2; generalize (Rplus_lt_compat_l (- y) x y H3);
              replace (- y + x) with (x - y).
  rewrite Rplus_opp_l.
  intro H6;
    generalize (Rmult_lt_compat_l (/ 2) (x - y) 0 (Rinv_0_lt_compat 2 Hyp) H6);
      rewrite Rmult_0_r; replace (/ 2 * (x - y)) with ((x - y) / 2).
  clear H6; intro H6;
    generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) (- y) H H2);
      replace (- (PI / 2) + - (PI / 2)) with (- PI).
  replace (x + - y) with (x - y).
  intro H7;
    generalize
      (Rmult_le_compat_l (/ 2) (- PI) (x - y)
        (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H7);
      replace (/ 2 * - PI) with (- (PI / 2)).
  replace (/ 2 * (x - y)) with ((x - y) / 2).
  clear H7; intro H7; clear H H0 H1 H2; apply Rminus_lt; rewrite form4;
    generalize (cos_gt_0 ((x + y) / 2) H4 H5); intro H8;
      generalize (Rmult_lt_0_compat 2 (cos ((x + y) / 2)) Hyp H8);
        clear H8; intro H8; cut (- PI < - (PI / 2)).
  intro H9;
    generalize
      (sin_lt_0_var ((x - y) / 2)
        (Rlt_le_trans (- PI) (- (PI / 2)) ((x - y) / 2) H9 H7) H6);
      intro H10;
        generalize
          (Rmult_lt_gt_compat_neg_l (sin ((x - y) / 2)) 0 (
            2 * cos ((x + y) / 2)) H10 H8); intro H11; rewrite Rmult_0_r in H11;
          rewrite Rmult_comm; assumption.
  apply Ropp_lt_gt_contravar; apply PI2_Rlt_PI.
  unfold Rdiv in |- *; apply Rmult_comm.
  unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse; apply Rmult_comm.
  reflexivity.
  pattern PI at 1 in |- *; rewrite double_var.
  rewrite Ropp_plus_distr.
  reflexivity.
  unfold Rdiv in |- *; apply Rmult_comm.
  unfold Rminus in |- *; apply Rplus_comm.
  unfold Rdiv in |- *; apply Rmult_comm.
  unfold Rdiv in |- *; apply Rmult_comm.
  unfold Rdiv in |- *; apply Rmult_comm.
  unfold Rdiv in |- *.
  rewrite <- Ropp_mult_distr_l_reverse.
  apply Rmult_comm.
  pattern PI at 1 in |- *; rewrite double_var.
  rewrite Ropp_plus_distr.
  reflexivity.
Qed.

Lemma sin_decreasing_0 :
  forall x y:R,
    x <= 3 * (PI / 2) ->
    PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x < sin y -> y < x.
Proof.
  intros; rewrite <- (sin_PI_x x) in H3; rewrite <- (sin_PI_x y) in H3;
    generalize (Ropp_lt_gt_contravar (sin (PI - x)) (sin (PI - y)) H3);
      repeat rewrite <- sin_neg;
        generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H);
          generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0);
            generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1);
              generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2);
                replace (- PI + x) with (x - PI).
  replace (- PI + PI / 2) with (- (PI / 2)).
  replace (- PI + y) with (y - PI).
  replace (- PI + 3 * (PI / 2)) with (PI / 2).
  replace (- (PI - x)) with (x - PI).
  replace (- (PI - y)) with (y - PI).
  intros; change (sin (y - PI) < sin (x - PI)) in H8;
    apply Rplus_lt_reg_r with (- PI); rewrite Rplus_comm;
      replace (y + - PI) with (y - PI).
  rewrite Rplus_comm; replace (x + - PI) with (x - PI).
  apply (sin_increasing_0 (y - PI) (x - PI) H4 H5 H6 H7 H8).
  reflexivity.
  reflexivity.
  unfold Rminus in |- *; rewrite Ropp_plus_distr.
  rewrite Ropp_involutive.
  apply Rplus_comm.
  unfold Rminus in |- *; rewrite Ropp_plus_distr.
  rewrite Ropp_involutive.
  apply Rplus_comm.
  pattern PI at 2 in |- *; rewrite double_var.
  rewrite Ropp_plus_distr.
  ring.
  unfold Rminus in |- *; apply Rplus_comm.
  pattern PI at 2 in |- *; rewrite double_var.
  rewrite Ropp_plus_distr.
  ring.
  unfold Rminus in |- *; apply Rplus_comm.
Qed.

Lemma sin_decreasing_1 :
  forall x y:R,
    x <= 3 * (PI / 2) ->
    PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> x < y -> sin y < sin x.
Proof.
  intros; rewrite <- (sin_PI_x x); rewrite <- (sin_PI_x y);
    generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H);
      generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0);
        generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1);
          generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2);
            generalize (Rplus_lt_compat_l (- PI) x y H3);
              replace (- PI + PI / 2) with (- (PI / 2)).
  replace (- PI + y) with (y - PI).
  replace (- PI + 3 * (PI / 2)) with (PI / 2).
  replace (- PI + x) with (x - PI).
  intros; apply Ropp_lt_cancel; repeat rewrite <- sin_neg;
    replace (- (PI - x)) with (x - PI).
  replace (- (PI - y)) with (y - PI).
  apply (sin_increasing_1 (x - PI) (y - PI) H7 H8 H5 H6 H4).
  unfold Rminus in |- *; rewrite Ropp_plus_distr.
  rewrite Ropp_involutive.
  apply Rplus_comm.
  unfold Rminus in |- *; rewrite Ropp_plus_distr.
  rewrite Ropp_involutive.
  apply Rplus_comm.
  unfold Rminus in |- *; apply Rplus_comm.
  pattern PI at 2 in |- *; rewrite double_var; ring.
  unfold Rminus in |- *; apply Rplus_comm.
  pattern PI at 2 in |- *; rewrite double_var; ring.
Qed.

Lemma cos_increasing_0 :
  forall x y:R,
    PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x < cos y -> x < y.
Proof.
  intros x y H1 H2 H3 H4; rewrite <- (cos_neg x); rewrite <- (cos_neg y);
    rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1);
      unfold INR in |- *;
        replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))).
  replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))).
  repeat rewrite cos_shift; intro H5;
    generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1);
      generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2);
        generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3);
          generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4).
  replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)).
  replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)).
  replace (-3 * (PI / 2) + 2 * PI) with (PI / 2).
  replace (-3 * (PI / 2) + PI) with (- (PI / 2)).
  clear H1 H2 H3 H4; intros H1 H2 H3 H4;
    apply Rplus_lt_reg_r with (-3 * (PI / 2));
      replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)).
  replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)).
  apply (sin_increasing_0 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H4 H3 H2 H1 H5).
  unfold Rminus in |- *.
  rewrite Ropp_mult_distr_l_reverse.
  apply Rplus_comm.
  unfold Rminus in |- *.
  rewrite Ropp_mult_distr_l_reverse.
  apply Rplus_comm.
  pattern PI at 3 in |- *; rewrite double_var.
  ring.
  rewrite double; pattern PI at 3 4 in |- *; rewrite double_var.
  ring.
  unfold Rminus in |- *.
  rewrite Ropp_mult_distr_l_reverse.
  apply Rplus_comm.
  unfold Rminus in |- *.
  rewrite Ropp_mult_distr_l_reverse.
  apply Rplus_comm.
  rewrite Rmult_1_r.
  rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var.
  ring.
  rewrite Rmult_1_r.
  rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var.
  ring.
Qed.

Lemma cos_increasing_1 :
  forall x y:R,
    PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x < y -> cos x < cos y.
Proof.
  intros x y H1 H2 H3 H4 H5;
    generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1);
      generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2);
        generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3);
          generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4);
            generalize (Rplus_lt_compat_l (-3 * (PI / 2)) x y H5);
              rewrite <- (cos_neg x); rewrite <- (cos_neg y);
                rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1);
                  unfold INR in |- *; replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)).
  replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)).
  replace (-3 * (PI / 2) + PI) with (- (PI / 2)).
  replace (-3 * (PI / 2) + 2 * PI) with (PI / 2).
  clear H1 H2 H3 H4 H5; intros H1 H2 H3 H4 H5;
    replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))).
  replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))).
  repeat rewrite cos_shift;
    apply
      (sin_increasing_1 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H5 H4 H3 H2 H1).
  rewrite Rmult_1_r.
  rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var.
  ring.
  rewrite Rmult_1_r.
  rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var.
  ring.
  rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var.
  ring.
  pattern PI at 3 in |- *; rewrite double_var; ring.
  unfold Rminus in |- *.
  rewrite <- Ropp_mult_distr_l_reverse.
  apply Rplus_comm.
  unfold Rminus in |- *.
  rewrite <- Ropp_mult_distr_l_reverse.
  apply Rplus_comm.
Qed.

Lemma cos_decreasing_0 :
  forall x y:R,
    0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x < cos y -> y < x.
Proof.
  intros; generalize (Ropp_lt_gt_contravar (cos x) (cos y) H3);
    repeat rewrite <- neg_cos; intro H4;
      change (cos (y + PI) < cos (x + PI)) in H4; rewrite (Rplus_comm x) in H4;
        rewrite (Rplus_comm y) in H4; generalize (Rplus_le_compat_l PI 0 x H);
          generalize (Rplus_le_compat_l PI x PI H0);
            generalize (Rplus_le_compat_l PI 0 y H1);
              generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r.
  rewrite <- double.
  clear H H0 H1 H2 H3; intros; apply Rplus_lt_reg_r with PI;
    apply (cos_increasing_0 (PI + y) (PI + x) H0 H H2 H1 H4).
Qed.

Lemma cos_decreasing_1 :
  forall x y:R,
    0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x < y -> cos y < cos x.
Proof.
  intros; apply Ropp_lt_cancel; repeat rewrite <- neg_cos;
    rewrite (Rplus_comm x); rewrite (Rplus_comm y);
      generalize (Rplus_le_compat_l PI 0 x H);
        generalize (Rplus_le_compat_l PI x PI H0);
          generalize (Rplus_le_compat_l PI 0 y H1);
            generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r.
  rewrite <- double.
  generalize (Rplus_lt_compat_l PI x y H3); clear H H0 H1 H2 H3; intros;
    apply (cos_increasing_1 (PI + x) (PI + y) H3 H2 H1 H0 H).
Qed.

Lemma tan_diff :
  forall x y:R,
    cos x <> 0 -> cos y <> 0 -> tan x - tan y = sin (x - y) / (cos x * cos y).
Proof.
  intros; unfold tan in |- *; rewrite sin_minus.
  unfold Rdiv in |- *.
  unfold Rminus in |- *.
  rewrite Rmult_plus_distr_r.
  rewrite Rinv_mult_distr.
  repeat rewrite (Rmult_comm (sin x)).
  repeat rewrite Rmult_assoc.
  rewrite (Rmult_comm (cos y)).
  repeat rewrite Rmult_assoc.
  rewrite <- Rinv_l_sym.
  rewrite Rmult_1_r.
  rewrite (Rmult_comm (sin x)).
  apply Rplus_eq_compat_l.
  rewrite <- Ropp_mult_distr_l_reverse.
  rewrite <- Ropp_mult_distr_r_reverse.
  rewrite (Rmult_comm (/ cos x)).
  repeat rewrite Rmult_assoc.
  rewrite (Rmult_comm (cos x)).
  repeat rewrite Rmult_assoc.
  rewrite <- Rinv_l_sym.
  rewrite Rmult_1_r.
  reflexivity.
  assumption.
  assumption.
  assumption.
  assumption.
Qed.

Lemma tan_increasing_0 :
  forall x y:R,
    - (PI / 4) <= x ->
    x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x < tan y -> x < y.
Proof.
  intros; generalize PI4_RLT_PI2; intro H4;
    generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4);
      intro H5; change (- (PI / 2) < - (PI / 4)) in H5;
        generalize
          (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
            (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1;
          generalize
            (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
              (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2;
            generalize
              (not_eq_sym
                (Rlt_not_eq 0 (cos x)
                  (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
                    (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4))));
              intro H6;
                generalize
                  (not_eq_sym
                    (Rlt_not_eq 0 (cos y)
                      (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
                        (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4))));
                  intro H7; generalize (tan_diff x y H6 H7); intro H8;
                    generalize (Rlt_minus (tan x) (tan y) H3); clear H3;
                      intro H3; rewrite H8 in H3; cut (sin (x - y) < 0).
  intro H9; generalize (Ropp_le_ge_contravar (- (PI / 4)) y H1);
    rewrite Ropp_involutive; intro H10; generalize (Rge_le (PI / 4) (- y) H10);
      clear H10; intro H10; generalize (Ropp_le_ge_contravar y (PI / 4) H2);
        intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11);
          clear H11; intro H11;
            generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11);
              generalize (Rplus_le_compat x (PI / 4) (- y) (PI / 4) H0 H10);
                replace (x + - y) with (x - y).
  replace (PI / 4 + PI / 4) with (PI / 2).
  replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)).
  intros; case (Rtotal_order 0 (x - y)); intro H14.
  generalize
    (sin_gt_0 (x - y) H14 (Rle_lt_trans (x - y) (PI / 2) PI H12 PI2_Rlt_PI));
    intro H15; elim (Rlt_irrefl 0 (Rlt_trans 0 (sin (x - y)) 0 H15 H9)).
  elim H14; intro H15.
  rewrite <- H15 in H9; rewrite sin_0 in H9; elim (Rlt_irrefl 0 H9).
  apply Rminus_lt; assumption.
  pattern PI at 1 in |- *; rewrite double_var.
  unfold Rdiv in |- *.
  rewrite Rmult_plus_distr_r.
  repeat rewrite Rmult_assoc.
  rewrite <- Rinv_mult_distr.
  rewrite Ropp_plus_distr.
  replace 4 with 4.
  reflexivity.
  ring.
  discrR.
  discrR.
  pattern PI at 1 in |- *; rewrite double_var.
  unfold Rdiv in |- *.
  rewrite Rmult_plus_distr_r.
  repeat rewrite Rmult_assoc.
  rewrite <- Rinv_mult_distr.
  replace 4 with 4.
  reflexivity.
  ring.
  discrR.
  discrR.
  reflexivity.
  case (Rcase_abs (sin (x - y))); intro H9.
  assumption.
  generalize (Rge_le (sin (x - y)) 0 H9); clear H9; intro H9;
    generalize (Rinv_0_lt_compat (cos x) HP1); intro H10;
      generalize (Rinv_0_lt_compat (cos y) HP2); intro H11;
        generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11);
          replace (/ cos x * / cos y) with (/ (cos x * cos y)).
  intro H12;
    generalize
      (Rmult_le_pos (sin (x - y)) (/ (cos x * cos y)) H9
        (Rlt_le 0 (/ (cos x * cos y)) H12)); intro H13;
      elim
        (Rlt_irrefl 0 (Rle_lt_trans 0 (sin (x - y) * / (cos x * cos y)) 0 H13 H3)).
  rewrite Rinv_mult_distr.
  reflexivity.
  assumption.
  assumption.
Qed.

Lemma tan_increasing_1 :
  forall x y:R,
    - (PI / 4) <= x ->
    x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x < y -> tan x < tan y.
Proof.
  intros; apply Rminus_lt; generalize PI4_RLT_PI2; intro H4;
    generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4);
      intro H5; change (- (PI / 2) < - (PI / 4)) in H5;
        generalize
          (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
            (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1;
          generalize
            (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
              (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2;
            generalize
              (not_eq_sym
                (Rlt_not_eq 0 (cos x)
                  (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
                    (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4))));
              intro H6;
                generalize
                  (not_eq_sym
                    (Rlt_not_eq 0 (cos y)
                      (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
                        (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4))));
                  intro H7; rewrite (tan_diff x y H6 H7);
                    generalize (Rinv_0_lt_compat (cos x) HP1); intro H10;
                      generalize (Rinv_0_lt_compat (cos y) HP2); intro H11;
                        generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11);
                          replace (/ cos x * / cos y) with (/ (cos x * cos y)).
  clear H10 H11; intro H8; generalize (Ropp_le_ge_contravar y (PI / 4) H2);
    intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11);
      clear H11; intro H11;
        generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11);
          replace (x + - y) with (x - y).
  replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)).
  clear H11; intro H9; generalize (Rlt_minus x y H3); clear H3; intro H3;
    clear H H0 H1 H2 H4 H5 HP1 HP2; generalize PI2_Rlt_PI;
      intro H1; generalize (Ropp_lt_gt_contravar (PI / 2) PI H1);
        clear H1; intro H1;
          generalize
            (sin_lt_0_var (x - y) (Rlt_le_trans (- PI) (- (PI / 2)) (x - y) H1 H9) H3);
            intro H2;
              generalize
                (Rmult_lt_gt_compat_neg_l (sin (x - y)) 0 (/ (cos x * cos y)) H2 H8);
                rewrite Rmult_0_r; intro H4; assumption.
  pattern PI at 1 in |- *; rewrite double_var.
  unfold Rdiv in |- *.
  rewrite Rmult_plus_distr_r.
  repeat rewrite Rmult_assoc.
  rewrite <- Rinv_mult_distr.
  replace 4 with 4.
  rewrite Ropp_plus_distr.
  reflexivity.
  ring.
  discrR.
  discrR.
  reflexivity.
  apply Rinv_mult_distr; assumption.
Qed.

Lemma sin_incr_0 :
  forall x y:R,
    - (PI / 2) <= x ->
    x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x <= sin y -> x <= y.
Proof.
  intros; case (Rtotal_order (sin x) (sin y)); intro H4;
    [ left; apply (sin_increasing_0 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order x y); intro H6;
          [ left; assumption
            | elim H6; intro H7;
              [ right; assumption
                | generalize (sin_increasing_1 y x H1 H2 H H0 H7); intro H8;
                  rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8) ] ]
          | elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ].
Qed.

Lemma sin_incr_1 :
  forall x y:R,
    - (PI / 2) <= x ->
    x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x <= y -> sin x <= sin y.
Proof.
  intros; case (Rtotal_order x y); intro H4;
    [ left; apply (sin_increasing_1 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order (sin x) (sin y)); intro H6;
          [ left; assumption
            | elim H6; intro H7;
              [ right; assumption
                | generalize (sin_increasing_0 y x H1 H2 H H0 H7); intro H8;
                  rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ]
          | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.

Lemma sin_decr_0 :
  forall x y:R,
    x <= 3 * (PI / 2) ->
    PI / 2 <= x ->
    y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x <= sin y -> y <= x.
Proof.
  intros; case (Rtotal_order (sin x) (sin y)); intro H4;
    [ left; apply (sin_decreasing_0 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order x y); intro H6;
          [ generalize (sin_decreasing_1 x y H H0 H1 H2 H6); intro H8;
            rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8)
            | elim H6; intro H7;
              [ right; symmetry  in |- *; assumption | left; assumption ] ]
          | elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ].
Qed.

Lemma sin_decr_1 :
  forall x y:R,
    x <= 3 * (PI / 2) ->
    PI / 2 <= x ->
    y <= 3 * (PI / 2) -> PI / 2 <= y -> x <= y -> sin y <= sin x.
Proof.
  intros; case (Rtotal_order x y); intro H4;
    [ left; apply (sin_decreasing_1 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order (sin x) (sin y)); intro H6;
          [ generalize (sin_decreasing_0 x y H H0 H1 H2 H6); intro H8;
            rewrite H5 in H8; elim (Rlt_irrefl y H8)
            | elim H6; intro H7;
              [ right; symmetry  in |- *; assumption | left; assumption ] ]
          | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.

Lemma cos_incr_0 :
  forall x y:R,
    PI <= x ->
    x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x <= cos y -> x <= y.
Proof.
  intros; case (Rtotal_order (cos x) (cos y)); intro H4;
    [ left; apply (cos_increasing_0 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order x y); intro H6;
          [ left; assumption
            | elim H6; intro H7;
              [ right; assumption
                | generalize (cos_increasing_1 y x H1 H2 H H0 H7); intro H8;
                  rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8) ] ]
          | elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ].
Qed.

Lemma cos_incr_1 :
  forall x y:R,
    PI <= x ->
    x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x <= y -> cos x <= cos y.
Proof.
  intros; case (Rtotal_order x y); intro H4;
    [ left; apply (cos_increasing_1 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order (cos x) (cos y)); intro H6;
          [ left; assumption
            | elim H6; intro H7;
              [ right; assumption
                | generalize (cos_increasing_0 y x H1 H2 H H0 H7); intro H8;
                  rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ]
          | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.

Lemma cos_decr_0 :
  forall x y:R,
    0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x <= cos y -> y <= x.
Proof.
  intros; case (Rtotal_order (cos x) (cos y)); intro H4;
    [ left; apply (cos_decreasing_0 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order x y); intro H6;
          [ generalize (cos_decreasing_1 x y H H0 H1 H2 H6); intro H8;
            rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8)
            | elim H6; intro H7;
              [ right; symmetry  in |- *; assumption | left; assumption ] ]
          | elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ].
Qed.

Lemma cos_decr_1 :
  forall x y:R,
    0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x <= y -> cos y <= cos x.
Proof.
  intros; case (Rtotal_order x y); intro H4;
    [ left; apply (cos_decreasing_1 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order (cos x) (cos y)); intro H6;
          [ generalize (cos_decreasing_0 x y H H0 H1 H2 H6); intro H8;
            rewrite H5 in H8; elim (Rlt_irrefl y H8)
            | elim H6; intro H7;
              [ right; symmetry  in |- *; assumption | left; assumption ] ]
          | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.

Lemma tan_incr_0 :
  forall x y:R,
    - (PI / 4) <= x ->
    x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x <= tan y -> x <= y.
Proof.
  intros; case (Rtotal_order (tan x) (tan y)); intro H4;
    [ left; apply (tan_increasing_0 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order x y); intro H6;
          [ left; assumption
            | elim H6; intro H7;
              [ right; assumption
                | generalize (tan_increasing_1 y x H1 H2 H H0 H7); intro H8;
                  rewrite H5 in H8; elim (Rlt_irrefl (tan y) H8) ] ]
          | elim (Rlt_irrefl (tan x) (Rle_lt_trans (tan x) (tan y) (tan x) H3 H5)) ] ].
Qed.

Lemma tan_incr_1 :
  forall x y:R,
    - (PI / 4) <= x ->
    x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x <= y -> tan x <= tan y.
Proof.
  intros; case (Rtotal_order x y); intro H4;
    [ left; apply (tan_increasing_1 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order (tan x) (tan y)); intro H6;
          [ left; assumption
            | elim H6; intro H7;
              [ right; assumption
                | generalize (tan_increasing_0 y x H1 H2 H H0 H7); intro H8;
                  rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ]
          | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.

(**********)
Lemma sin_eq_0_1 : forall x:R, (exists k : Z, x = IZR k * PI) -> sin x = 0.
Proof.
  intros.
  elim H; intros.
  apply (Zcase_sign x0).
  intro.
  rewrite H1 in H0.
  simpl in H0.
  rewrite H0; rewrite Rmult_0_l; apply sin_0.
  intro.
  cut (0 <= x0)%Z.
  intro.
  elim (IZN x0 H2); intros.
  rewrite H3 in H0.
  rewrite <- INR_IZR_INZ in H0.
  rewrite H0.
  elim (even_odd_cor x1); intros.
  elim H4; intro.
  rewrite H5.
  rewrite mult_INR.
  simpl in |- *.
  rewrite <- (Rplus_0_l (2 * INR x2 * PI)).
  rewrite sin_period.
  apply sin_0.
  rewrite H5.
  rewrite S_INR; rewrite mult_INR.
  simpl in |- *.
  rewrite Rmult_plus_distr_r.
  rewrite Rmult_1_l; rewrite sin_plus.
  rewrite sin_PI.
  rewrite Rmult_0_r.
  rewrite <- (Rplus_0_l (2 * INR x2 * PI)).
  rewrite sin_period.
  rewrite sin_0; ring.
  apply le_IZR.
  left; apply IZR_lt.
  assert (H2 := Z.gt_lt_iff).
  elim (H2 x0 0%Z); intros.
  apply H3; assumption.
  intro.
  rewrite H0.
  replace (sin (IZR x0 * PI)) with (- sin (- IZR x0 * PI)).
  cut (0 <= - x0)%Z.
  intro.
  rewrite <- Ropp_Ropp_IZR.
  elim (IZN (- x0) H2); intros.
  rewrite H3.
  rewrite <- INR_IZR_INZ.
  elim (even_odd_cor x1); intros.
  elim H4; intro.
  rewrite H5.
  rewrite mult_INR.
  simpl in |- *.
  rewrite <- (Rplus_0_l (2 * INR x2 * PI)).
  rewrite sin_period.
  rewrite sin_0; ring.
  rewrite H5.
  rewrite S_INR; rewrite mult_INR.
  simpl in |- *.
  rewrite Rmult_plus_distr_r.
  rewrite Rmult_1_l; rewrite sin_plus.
  rewrite sin_PI.
  rewrite Rmult_0_r.
  rewrite <- (Rplus_0_l (2 * INR x2 * PI)).
  rewrite sin_period.
  rewrite sin_0; ring.
  apply le_IZR.
  apply Rplus_le_reg_l with (IZR x0).
  rewrite Rplus_0_r.
  rewrite Ropp_Ropp_IZR.
  rewrite Rplus_opp_r.
  left; replace 0 with (IZR 0); [ apply IZR_lt | reflexivity ].
  assumption.
  rewrite <- sin_neg.
  rewrite Ropp_mult_distr_l_reverse.
  rewrite Ropp_involutive.
  reflexivity.
Qed.

Lemma sin_eq_0_0 (x:R) : sin x = 0 ->  exists k : Z, x = IZR k * PI.
Proof.
  intros Hx.
  destruct (euclidian_division x PI PI_neq0) as (q & r & EQ & Hr & Hr').
  exists q.
  rewrite <- (Rplus_0_r (_*_)). subst. apply Rplus_eq_compat_l.
  rewrite sin_plus in Hx.
  assert (H : sin (IZR q * PI) = 0) by (apply sin_eq_0_1; now exists q).
  rewrite H, Rmult_0_l, Rplus_0_l in Hx.
  destruct (Rmult_integral _ _ Hx) as [H'|H'].
  - exfalso.
    generalize (sin2_cos2 (IZR q * PI)).
    rewrite H, H', Rsqr_0, Rplus_0_l.
    intros; now apply R1_neq_R0.
  - rewrite Rabs_right in Hr'; [|left; apply PI_RGT_0].
    destruct Hr as [Hr | ->]; trivial.
    exfalso.
    generalize (sin_gt_0 r Hr Hr'). rewrite H'. apply Rlt_irrefl.
Qed.

Lemma cos_eq_0_0 (x:R) :
  cos x = 0 ->  exists k : Z, x = IZR k * PI + PI / 2.
Proof.
  rewrite cos_sin. intros Hx.
  destruct (sin_eq_0_0 (PI/2 + x) Hx) as (k,Hk). clear Hx.
  exists (k-1)%Z. rewrite <- Z_R_minus; simpl.
  symmetry in Hk. field_simplify [Hk]. field.
Qed.

Lemma cos_eq_0_1 (x:R) :
  (exists k : Z, x = IZR k * PI + PI / 2) -> cos x = 0.
Proof.
  rewrite cos_sin. intros (k,->).
  replace (_ + _) with (IZR k * PI + PI) by field.
  rewrite neg_sin, <- Ropp_0. apply Ropp_eq_compat.
  apply sin_eq_0_1. now exists k.
Qed.

Lemma sin_eq_O_2PI_0 (x:R) :
  0 <= x -> x <= 2 * PI -> sin x = 0 ->
  x = 0 \/ x = PI \/ x = 2 * PI.
Proof.
  intros Lo Hi Hx. destruct (sin_eq_0_0 x Hx) as (k,Hk). clear Hx.
  destruct (Rtotal_order PI x) as [Hx|[Hx|Hx]].
  - right; right.
    clear Lo. subst.
    f_equal. change 2 with (IZR (- (-2))). f_equal.
    apply Z.add_move_0_l.
    apply one_IZR_lt1.
    rewrite plus_IZR; simpl.
    split.
    + replace (-1) with (-2 + 1) by ring.
      apply Rplus_lt_compat_l.
      apply Rmult_lt_reg_r with PI; [apply PI_RGT_0|].
      now rewrite Rmult_1_l.
    + apply Rle_lt_trans with 0; [|apply Rlt_0_1].
      replace 0 with (-2 + 2) by ring.
      apply Rplus_le_compat_l.
      apply Rmult_le_reg_r with PI; [apply PI_RGT_0|].
      trivial.
  - right; left; auto.
  - left.
    clear Hi. subst.
    replace 0 with (IZR 0 * PI) by (simpl; ring). f_equal. f_equal.
    apply one_IZR_lt1.
    split.
    + apply Rlt_le_trans with 0;
       [rewrite <- Ropp_0; apply Ropp_gt_lt_contravar, Rlt_0_1 | ].
      apply Rmult_le_reg_r with PI; [apply PI_RGT_0|].
      now rewrite Rmult_0_l.
    + apply Rmult_lt_reg_r with PI; [apply PI_RGT_0|].
      now rewrite Rmult_1_l.
Qed.

Lemma sin_eq_O_2PI_1 (x:R) :
  0 <= x -> x <= 2 * PI ->
  x = 0 \/ x = PI \/ x = 2 * PI -> sin x = 0.
Proof.
  intros _ _ [ -> |[ -> | -> ]].
  - now rewrite sin_0.
  - now rewrite sin_PI.
  - now rewrite sin_2PI.
Qed.

Lemma cos_eq_0_2PI_0 (x:R) :
  0 <= x -> x <= 2 * PI -> cos x = 0 ->
  x = PI / 2 \/ x = 3 * (PI / 2).
Proof.
  intros Lo Hi Hx.
  destruct (Rtotal_order x (3 * (PI / 2))) as [LT|[EQ|GT]].
  - rewrite cos_sin in Hx.
    assert (Lo' : 0 <= PI / 2 + x).
    { apply Rplus_le_le_0_compat. apply Rlt_le, PI2_RGT_0. trivial. }
    assert (Hi' : PI / 2 + x <= 2 * PI).
    { apply Rlt_le.
      replace (2 * PI) with (PI / 2 + 3 * (PI / 2)) by field.
      now apply Rplus_lt_compat_l. }
    destruct (sin_eq_O_2PI_0 (PI / 2 + x) Lo' Hi' Hx) as [H|[H|H]].
    + exfalso.
      apply (Rplus_le_compat_l (PI/2)) in Lo.
      rewrite Rplus_0_r, H in Lo.
      apply (Rlt_irrefl 0 (Rlt_le_trans 0 (PI / 2) 0 PI2_RGT_0 Lo)).
    + left.
      apply (Rplus_eq_compat_l (-(PI/2))) in H.
      ring_simplify in H. rewrite H. field.
    + right.
      apply (Rplus_eq_compat_l (-(PI/2))) in H.
      ring_simplify in H. rewrite H. field.
  - now right.
  - exfalso.
    destruct (cos_eq_0_0 x Hx) as (k,Hk). clear Hx Lo.
    subst.
    assert (LT : (k < 2)%Z).
    { apply lt_IZR. simpl.
      apply (Rmult_lt_reg_r PI); [apply PI_RGT_0|].
      apply Rlt_le_trans with (IZR k * PI + PI/2); trivial.
      rewrite <- (Rplus_0_r (IZR k * PI)) at 1.
      apply Rplus_lt_compat_l. apply PI2_RGT_0. }
    assert (GT' : (1 < k)%Z).
    { apply lt_IZR. simpl.
      apply (Rmult_lt_reg_r PI); [apply PI_RGT_0|rewrite Rmult_1_l].
      replace (3*(PI/2)) with (PI/2 + PI) in GT by field.
      rewrite Rplus_comm in GT.
      now apply Rplus_lt_reg_r in GT. }
    omega.
Qed.

Lemma cos_eq_0_2PI_1 (x:R) :
  0 <= x -> x <= 2 * PI ->
  x = PI / 2 \/ x = 3 * (PI / 2) -> cos x = 0.
Proof.
 intros Lo Hi [ -> | -> ].
 - now rewrite cos_PI2.
 - now rewrite cos_3PI2.
Qed.