1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import Rbase.
Require Import Rfunctions.
Require Import Ranalysis1.
Require Import RList.
Require Import Classical_Prop.
Require Import Classical_Pred_Type.
Local Open Scope R_scope.
(** * General definitions and propositions *)
Definition included (D1 D2:R -> Prop) : Prop := forall x:R, D1 x -> D2 x.
Definition disc (x:R) (delta:posreal) (y:R) : Prop := Rabs (y - x) < delta.
Definition neighbourhood (V:R -> Prop) (x:R) : Prop :=
exists delta : posreal, included (disc x delta) V.
Definition open_set (D:R -> Prop) : Prop :=
forall x:R, D x -> neighbourhood D x.
Definition complementary (D:R -> Prop) (c:R) : Prop := ~ D c.
Definition closed_set (D:R -> Prop) : Prop := open_set (complementary D).
Definition intersection_domain (D1 D2:R -> Prop) (c:R) : Prop := D1 c /\ D2 c.
Definition union_domain (D1 D2:R -> Prop) (c:R) : Prop := D1 c \/ D2 c.
Definition interior (D:R -> Prop) (x:R) : Prop := neighbourhood D x.
Lemma interior_P1 : forall D:R -> Prop, included (interior D) D.
Proof.
intros; unfold included; unfold interior; intros;
unfold neighbourhood in H; elim H; intros; unfold included in H0;
apply H0; unfold disc; unfold Rminus;
rewrite Rplus_opp_r; rewrite Rabs_R0; apply (cond_pos x0).
Qed.
Lemma interior_P2 : forall D:R -> Prop, open_set D -> included D (interior D).
Proof.
intros; unfold open_set in H; unfold included; intros;
assert (H1 := H _ H0); unfold interior; apply H1.
Qed.
Definition point_adherent (D:R -> Prop) (x:R) : Prop :=
forall V:R -> Prop,
neighbourhood V x -> exists y : R, intersection_domain V D y.
Definition adherence (D:R -> Prop) (x:R) : Prop := point_adherent D x.
Lemma adherence_P1 : forall D:R -> Prop, included D (adherence D).
Proof.
intro; unfold included; intros; unfold adherence;
unfold point_adherent; intros; exists x;
unfold intersection_domain; split.
unfold neighbourhood in H0; elim H0; intros; unfold included in H1; apply H1;
unfold disc; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0; apply (cond_pos x0).
apply H.
Qed.
Lemma included_trans :
forall D1 D2 D3:R -> Prop,
included D1 D2 -> included D2 D3 -> included D1 D3.
Proof.
unfold included; intros; apply H0; apply H; apply H1.
Qed.
Lemma interior_P3 : forall D:R -> Prop, open_set (interior D).
Proof.
intro; unfold open_set, interior; unfold neighbourhood;
intros; elim H; intros.
exists x0; unfold included; intros.
set (del := x0 - Rabs (x - x1)).
cut (0 < del).
intro; exists (mkposreal del H2); intros.
cut (included (disc x1 (mkposreal del H2)) (disc x x0)).
intro; assert (H5 := included_trans _ _ _ H4 H0).
apply H5; apply H3.
unfold included; unfold disc; intros.
apply Rle_lt_trans with (Rabs (x3 - x1) + Rabs (x1 - x)).
replace (x3 - x) with (x3 - x1 + (x1 - x)); [ apply Rabs_triang | ring ].
replace (pos x0) with (del + Rabs (x1 - x)).
do 2 rewrite <- (Rplus_comm (Rabs (x1 - x))); apply Rplus_lt_compat_l;
apply H4.
unfold del; rewrite <- (Rabs_Ropp (x - x1)); rewrite Ropp_minus_distr;
ring.
unfold del; apply Rplus_lt_reg_r with (Rabs (x - x1));
rewrite Rplus_0_r;
replace (Rabs (x - x1) + (x0 - Rabs (x - x1))) with (pos x0);
[ idtac | ring ].
unfold disc in H1; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H1.
Qed.
Lemma complementary_P1 :
forall D:R -> Prop,
~ (exists y : R, intersection_domain D (complementary D) y).
Proof.
intro; red; intro; elim H; intros;
unfold intersection_domain, complementary in H0; elim H0;
intros; elim H2; assumption.
Qed.
Lemma adherence_P2 :
forall D:R -> Prop, closed_set D -> included (adherence D) D.
Proof.
unfold closed_set; unfold open_set, complementary; intros;
unfold included, adherence; intros; assert (H1 := classic (D x));
elim H1; intro.
assumption.
assert (H3 := H _ H2); assert (H4 := H0 _ H3); elim H4; intros;
unfold intersection_domain in H5; elim H5; intros;
elim H6; assumption.
Qed.
Lemma adherence_P3 : forall D:R -> Prop, closed_set (adherence D).
Proof.
intro; unfold closed_set, adherence;
unfold open_set, complementary, point_adherent;
intros;
set
(P :=
fun V:R -> Prop =>
neighbourhood V x -> exists y : R, intersection_domain V D y);
assert (H0 := not_all_ex_not _ P H); elim H0; intros V0 H1;
unfold P in H1; assert (H2 := imply_to_and _ _ H1);
unfold neighbourhood; elim H2; intros; unfold neighbourhood in H3;
elim H3; intros; exists x0; unfold included;
intros; red; intro.
assert (H8 := H7 V0);
cut (exists delta : posreal, (forall x:R, disc x1 delta x -> V0 x)).
intro; assert (H10 := H8 H9); elim H4; assumption.
cut (0 < x0 - Rabs (x - x1)).
intro; set (del := mkposreal _ H9); exists del; intros;
unfold included in H5; apply H5; unfold disc;
apply Rle_lt_trans with (Rabs (x2 - x1) + Rabs (x1 - x)).
replace (x2 - x) with (x2 - x1 + (x1 - x)); [ apply Rabs_triang | ring ].
replace (pos x0) with (del + Rabs (x1 - x)).
do 2 rewrite <- (Rplus_comm (Rabs (x1 - x))); apply Rplus_lt_compat_l;
apply H10.
unfold del; simpl; rewrite <- (Rabs_Ropp (x - x1));
rewrite Ropp_minus_distr; ring.
apply Rplus_lt_reg_r with (Rabs (x - x1)); rewrite Rplus_0_r;
replace (Rabs (x - x1) + (x0 - Rabs (x - x1))) with (pos x0);
[ rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H6 | ring ].
Qed.
Definition eq_Dom (D1 D2:R -> Prop) : Prop :=
included D1 D2 /\ included D2 D1.
Infix "=_D" := eq_Dom (at level 70, no associativity).
Lemma open_set_P1 : forall D:R -> Prop, open_set D <-> D =_D interior D.
Proof.
intro; split.
intro; unfold eq_Dom; split.
apply interior_P2; assumption.
apply interior_P1.
intro; unfold eq_Dom in H; elim H; clear H; intros; unfold open_set;
intros; unfold included, interior in H; unfold included in H0;
apply (H _ H1).
Qed.
Lemma closed_set_P1 : forall D:R -> Prop, closed_set D <-> D =_D adherence D.
Proof.
intro; split.
intro; unfold eq_Dom; split.
apply adherence_P1.
apply adherence_P2; assumption.
unfold eq_Dom; unfold included; intros;
assert (H0 := adherence_P3 D); unfold closed_set in H0;
unfold closed_set; unfold open_set;
unfold open_set in H0; intros; assert (H2 : complementary (adherence D) x).
unfold complementary; unfold complementary in H1; red; intro;
elim H; clear H; intros _ H; elim H1; apply (H _ H2).
assert (H3 := H0 _ H2); unfold neighbourhood;
unfold neighbourhood in H3; elim H3; intros; exists x0;
unfold included; unfold included in H4; intros;
assert (H6 := H4 _ H5); unfold complementary in H6;
unfold complementary; red; intro;
elim H; clear H; intros H _; elim H6; apply (H _ H7).
Qed.
Lemma neighbourhood_P1 :
forall (D1 D2:R -> Prop) (x:R),
included D1 D2 -> neighbourhood D1 x -> neighbourhood D2 x.
Proof.
unfold included, neighbourhood; intros; elim H0; intros; exists x0;
intros; unfold included; unfold included in H1;
intros; apply (H _ (H1 _ H2)).
Qed.
Lemma open_set_P2 :
forall D1 D2:R -> Prop,
open_set D1 -> open_set D2 -> open_set (union_domain D1 D2).
Proof.
unfold open_set; intros; unfold union_domain in H1; elim H1; intro.
apply neighbourhood_P1 with D1.
unfold included, union_domain; tauto.
apply H; assumption.
apply neighbourhood_P1 with D2.
unfold included, union_domain; tauto.
apply H0; assumption.
Qed.
Lemma open_set_P3 :
forall D1 D2:R -> Prop,
open_set D1 -> open_set D2 -> open_set (intersection_domain D1 D2).
Proof.
unfold open_set; intros; unfold intersection_domain in H1; elim H1;
intros.
assert (H4 := H _ H2); assert (H5 := H0 _ H3);
unfold intersection_domain; unfold neighbourhood in H4, H5;
elim H4; clear H; intros del1 H; elim H5; clear H0;
intros del2 H0; cut (0 < Rmin del1 del2).
intro; set (del := mkposreal _ H6).
exists del; unfold included; intros; unfold included in H, H0;
unfold disc in H, H0, H7.
split.
apply H; apply Rlt_le_trans with (pos del).
apply H7.
unfold del; simpl; apply Rmin_l.
apply H0; apply Rlt_le_trans with (pos del).
apply H7.
unfold del; simpl; apply Rmin_r.
unfold Rmin; case (Rle_dec del1 del2); intro.
apply (cond_pos del1).
apply (cond_pos del2).
Qed.
Lemma open_set_P4 : open_set (fun x:R => False).
Proof.
unfold open_set; intros; elim H.
Qed.
Lemma open_set_P5 : open_set (fun x:R => True).
Proof.
unfold open_set; intros; unfold neighbourhood.
exists (mkposreal 1 Rlt_0_1); unfold included; intros; trivial.
Qed.
Lemma disc_P1 : forall (x:R) (del:posreal), open_set (disc x del).
Proof.
intros; assert (H := open_set_P1 (disc x del)).
elim H; intros; apply H1.
unfold eq_Dom; split.
unfold included, interior, disc; intros;
cut (0 < del - Rabs (x - x0)).
intro; set (del2 := mkposreal _ H3).
exists del2; unfold included; intros.
apply Rle_lt_trans with (Rabs (x1 - x0) + Rabs (x0 - x)).
replace (x1 - x) with (x1 - x0 + (x0 - x)); [ apply Rabs_triang | ring ].
replace (pos del) with (del2 + Rabs (x0 - x)).
do 2 rewrite <- (Rplus_comm (Rabs (x0 - x))); apply Rplus_lt_compat_l.
apply H4.
unfold del2; simpl; rewrite <- (Rabs_Ropp (x - x0));
rewrite Ropp_minus_distr; ring.
apply Rplus_lt_reg_r with (Rabs (x - x0)); rewrite Rplus_0_r;
replace (Rabs (x - x0) + (del - Rabs (x - x0))) with (pos del);
[ rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H2 | ring ].
apply interior_P1.
Qed.
Lemma continuity_P1 :
forall (f:R -> R) (x:R),
continuity_pt f x <->
(forall W:R -> Prop,
neighbourhood W (f x) ->
exists V : R -> Prop,
neighbourhood V x /\ (forall y:R, V y -> W (f y))).
Proof.
intros; split.
intros; unfold neighbourhood in H0.
elim H0; intros del1 H1.
unfold continuity_pt in H; unfold continue_in in H; unfold limit1_in in H;
unfold limit_in in H; simpl in H; unfold R_dist in H.
assert (H2 := H del1 (cond_pos del1)).
elim H2; intros del2 H3.
elim H3; intros.
exists (disc x (mkposreal del2 H4)).
intros; unfold included in H1; split.
unfold neighbourhood, disc.
exists (mkposreal del2 H4).
unfold included; intros; assumption.
intros; apply H1; unfold disc; case (Req_dec y x); intro.
rewrite H7; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply (cond_pos del1).
apply H5; split.
unfold D_x, no_cond; split.
trivial.
apply (not_eq_sym (A:=R)); apply H7.
unfold disc in H6; apply H6.
intros; unfold continuity_pt; unfold continue_in;
unfold limit1_in; unfold limit_in;
intros.
assert (H1 := H (disc (f x) (mkposreal eps H0))).
cut (neighbourhood (disc (f x) (mkposreal eps H0)) (f x)).
intro; assert (H3 := H1 H2).
elim H3; intros D H4; elim H4; intros; unfold neighbourhood in H5; elim H5;
intros del1 H7.
exists (pos del1); split.
apply (cond_pos del1).
intros; elim H8; intros; simpl in H10; unfold R_dist in H10; simpl;
unfold R_dist; apply (H6 _ (H7 _ H10)).
unfold neighbourhood, disc; exists (mkposreal eps H0);
unfold included; intros; assumption.
Qed.
Definition image_rec (f:R -> R) (D:R -> Prop) (x:R) : Prop := D (f x).
(**********)
Lemma continuity_P2 :
forall (f:R -> R) (D:R -> Prop),
continuity f -> open_set D -> open_set (image_rec f D).
Proof.
intros; unfold open_set in H0; unfold open_set; intros;
assert (H2 := continuity_P1 f x); elim H2; intros H3 _;
assert (H4 := H3 (H x)); unfold neighbourhood, image_rec;
unfold image_rec in H1; assert (H5 := H4 D (H0 (f x) H1));
elim H5; intros V0 H6; elim H6; intros; unfold neighbourhood in H7;
elim H7; intros del H9; exists del; unfold included in H9;
unfold included; intros; apply (H8 _ (H9 _ H10)).
Qed.
(**********)
Lemma continuity_P3 :
forall f:R -> R,
continuity f <->
(forall D:R -> Prop, open_set D -> open_set (image_rec f D)).
Proof.
intros; split.
intros; apply continuity_P2; assumption.
intros; unfold continuity; unfold continuity_pt;
unfold continue_in; unfold limit1_in;
unfold limit_in; simpl; unfold R_dist;
intros; cut (open_set (disc (f x) (mkposreal _ H0))).
intro; assert (H2 := H _ H1).
unfold open_set, image_rec in H2; cut (disc (f x) (mkposreal _ H0) (f x)).
intro; assert (H4 := H2 _ H3).
unfold neighbourhood in H4; elim H4; intros del H5.
exists (pos del); split.
apply (cond_pos del).
intros; unfold included in H5; apply H5; elim H6; intros; apply H8.
unfold disc; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0; apply H0.
apply disc_P1.
Qed.
(**********)
Theorem Rsepare :
forall x y:R,
x <> y ->
exists V : R -> Prop,
(exists W : R -> Prop,
neighbourhood V x /\
neighbourhood W y /\ ~ (exists y : R, intersection_domain V W y)).
Proof.
intros x y Hsep; set (D := Rabs (x - y)).
cut (0 < D / 2).
intro; exists (disc x (mkposreal _ H)).
exists (disc y (mkposreal _ H)); split.
unfold neighbourhood; exists (mkposreal _ H); unfold included;
tauto.
split.
unfold neighbourhood; exists (mkposreal _ H); unfold included;
tauto.
red; intro; elim H0; intros; unfold intersection_domain in H1;
elim H1; intros.
cut (D < D).
intro; elim (Rlt_irrefl _ H4).
change (Rabs (x - y) < D);
apply Rle_lt_trans with (Rabs (x - x0) + Rabs (x0 - y)).
replace (x - y) with (x - x0 + (x0 - y)); [ apply Rabs_triang | ring ].
rewrite (double_var D); apply Rplus_lt_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H2.
apply H3.
unfold Rdiv; apply Rmult_lt_0_compat.
unfold D; apply Rabs_pos_lt; apply (Rminus_eq_contra _ _ Hsep).
apply Rinv_0_lt_compat; prove_sup0.
Qed.
Record family : Type := mkfamily
{ind : R -> Prop;
f :> R -> R -> Prop;
cond_fam : forall x:R, (exists y : R, f x y) -> ind x}.
Definition family_open_set (f:family) : Prop := forall x:R, open_set (f x).
Definition domain_finite (D:R -> Prop) : Prop :=
exists l : Rlist, (forall x:R, D x <-> In x l).
Definition family_finite (f:family) : Prop := domain_finite (ind f).
Definition covering (D:R -> Prop) (f:family) : Prop :=
forall x:R, D x -> exists y : R, f y x.
Definition covering_open_set (D:R -> Prop) (f:family) : Prop :=
covering D f /\ family_open_set f.
Definition covering_finite (D:R -> Prop) (f:family) : Prop :=
covering D f /\ family_finite f.
Lemma restriction_family :
forall (f:family) (D:R -> Prop) (x:R),
(exists y : R, (fun z1 z2:R => f z1 z2 /\ D z1) x y) ->
intersection_domain (ind f) D x.
Proof.
intros; elim H; intros; unfold intersection_domain; elim H0; intros;
split.
apply (cond_fam f0); exists x0; assumption.
assumption.
Qed.
Definition subfamily (f:family) (D:R -> Prop) : family :=
mkfamily (intersection_domain (ind f) D) (fun x y:R => f x y /\ D x)
(restriction_family f D).
Definition compact (X:R -> Prop) : Prop :=
forall f:family,
covering_open_set X f ->
exists D : R -> Prop, covering_finite X (subfamily f D).
(**********)
Lemma family_P1 :
forall (f:family) (D:R -> Prop),
family_open_set f -> family_open_set (subfamily f D).
Proof.
unfold family_open_set; intros; unfold subfamily;
simpl; assert (H0 := classic (D x)).
elim H0; intro.
cut (open_set (f0 x) -> open_set (fun y:R => f0 x y /\ D x)).
intro; apply H2; apply H.
unfold open_set; unfold neighbourhood; intros; elim H3;
intros; assert (H6 := H2 _ H4); elim H6; intros; exists x1;
unfold included; intros; split.
apply (H7 _ H8).
assumption.
cut (open_set (fun y:R => False) -> open_set (fun y:R => f0 x y /\ D x)).
intro; apply H2; apply open_set_P4.
unfold open_set; unfold neighbourhood; intros; elim H3;
intros; elim H1; assumption.
Qed.
Definition bounded (D:R -> Prop) : Prop :=
exists m : R, (exists M : R, (forall x:R, D x -> m <= x <= M)).
Lemma open_set_P6 :
forall D1 D2:R -> Prop, open_set D1 -> D1 =_D D2 -> open_set D2.
Proof.
unfold open_set; unfold neighbourhood; intros.
unfold eq_Dom in H0; elim H0; intros.
assert (H4 := H _ (H3 _ H1)).
elim H4; intros.
exists x0; apply included_trans with D1; assumption.
Qed.
(**********)
Lemma compact_P1 : forall X:R -> Prop, compact X -> bounded X.
Proof.
intros; unfold compact in H; set (D := fun x:R => True);
set (g := fun x y:R => Rabs y < x);
cut (forall x:R, (exists y : _, g x y) -> True);
[ intro | intro; trivial ].
set (f0 := mkfamily D g H0); assert (H1 := H f0);
cut (covering_open_set X f0).
intro; assert (H3 := H1 H2); elim H3; intros D' H4;
unfold covering_finite in H4; elim H4; intros; unfold family_finite in H6;
unfold domain_finite in H6; elim H6; intros l H7;
unfold bounded; set (r := MaxRlist l).
exists (- r); exists r; intros.
unfold covering in H5; assert (H9 := H5 _ H8); elim H9; intros;
unfold subfamily in H10; simpl in H10; elim H10; intros;
assert (H13 := H7 x0); simpl in H13; cut (intersection_domain D D' x0).
elim H13; clear H13; intros.
assert (H16 := H13 H15); unfold g in H11; split.
cut (x0 <= r).
intro; cut (Rabs x < r).
intro; assert (H19 := Rabs_def2 x r H18); elim H19; intros; left; assumption.
apply Rlt_le_trans with x0; assumption.
apply (MaxRlist_P1 l x0 H16).
cut (x0 <= r).
intro; apply Rle_trans with (Rabs x).
apply RRle_abs.
apply Rle_trans with x0.
left; apply H11.
assumption.
apply (MaxRlist_P1 l x0 H16).
unfold intersection_domain, D; tauto.
unfold covering_open_set; split.
unfold covering; intros; simpl; exists (Rabs x + 1);
unfold g; pattern (Rabs x) at 1; rewrite <- Rplus_0_r;
apply Rplus_lt_compat_l; apply Rlt_0_1.
unfold family_open_set; intro; case (Rtotal_order 0 x); intro.
apply open_set_P6 with (disc 0 (mkposreal _ H2)).
apply disc_P1.
unfold eq_Dom; unfold f0; simpl;
unfold g, disc; split.
unfold included; intros; unfold Rminus in H3; rewrite Ropp_0 in H3;
rewrite Rplus_0_r in H3; apply H3.
unfold included; intros; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; apply H3.
apply open_set_P6 with (fun x:R => False).
apply open_set_P4.
unfold eq_Dom; split.
unfold included; intros; elim H3.
unfold included, f0; simpl; unfold g; intros; elim H2;
intro;
[ rewrite <- H4 in H3; assert (H5 := Rabs_pos x0);
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H5 H3))
| assert (H6 := Rabs_pos x0); assert (H7 := Rlt_trans _ _ _ H3 H4);
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H6 H7)) ].
Qed.
(**********)
Lemma compact_P2 : forall X:R -> Prop, compact X -> closed_set X.
Proof.
intros; assert (H0 := closed_set_P1 X); elim H0; clear H0; intros _ H0;
apply H0; clear H0.
unfold eq_Dom; split.
apply adherence_P1.
unfold included; unfold adherence;
unfold point_adherent; intros; unfold compact in H;
assert (H1 := classic (X x)); elim H1; clear H1; intro.
assumption.
cut (forall y:R, X y -> 0 < Rabs (y - x) / 2).
intro; set (D := X);
set (g := fun y z:R => Rabs (y - z) < Rabs (y - x) / 2 /\ D y);
cut (forall x:R, (exists y : _, g x y) -> D x).
intro; set (f0 := mkfamily D g H3); assert (H4 := H f0);
cut (covering_open_set X f0).
intro; assert (H6 := H4 H5); elim H6; clear H6; intros D' H6.
unfold covering_finite in H6; decompose [and] H6;
unfold covering, subfamily in H7; simpl in H7;
unfold family_finite, subfamily in H8; simpl in H8;
unfold domain_finite in H8; elim H8; clear H8; intros l H8;
set (alp := MinRlist (AbsList l x)); cut (0 < alp).
intro; assert (H10 := H0 (disc x (mkposreal _ H9)));
cut (neighbourhood (disc x (mkposreal alp H9)) x).
intro; assert (H12 := H10 H11); elim H12; clear H12; intros y H12;
unfold intersection_domain in H12; elim H12; clear H12;
intros; assert (H14 := H7 _ H13); elim H14; clear H14;
intros y0 H14; elim H14; clear H14; intros; unfold g in H14;
elim H14; clear H14; intros; unfold disc in H12; simpl in H12;
cut (alp <= Rabs (y0 - x) / 2).
intro; assert (H18 := Rlt_le_trans _ _ _ H12 H17);
cut (Rabs (y0 - x) < Rabs (y0 - x)).
intro; elim (Rlt_irrefl _ H19).
apply Rle_lt_trans with (Rabs (y0 - y) + Rabs (y - x)).
replace (y0 - x) with (y0 - y + (y - x)); [ apply Rabs_triang | ring ].
rewrite (double_var (Rabs (y0 - x))); apply Rplus_lt_compat; assumption.
apply (MinRlist_P1 (AbsList l x) (Rabs (y0 - x) / 2)); apply AbsList_P1;
elim (H8 y0); clear H8; intros; apply H8; unfold intersection_domain;
split; assumption.
assert (H11 := disc_P1 x (mkposreal alp H9)); unfold open_set in H11;
apply H11.
unfold disc; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0; apply H9.
unfold alp; apply MinRlist_P2; intros;
assert (H10 := AbsList_P2 _ _ _ H9); elim H10; clear H10;
intros z H10; elim H10; clear H10; intros; rewrite H11;
apply H2; elim (H8 z); clear H8; intros; assert (H13 := H12 H10);
unfold intersection_domain, D in H13; elim H13; clear H13;
intros; assumption.
unfold covering_open_set; split.
unfold covering; intros; exists x0; simpl; unfold g;
split.
unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
unfold Rminus in H2; apply (H2 _ H5).
apply H5.
unfold family_open_set; intro; simpl; unfold g;
elim (classic (D x0)); intro.
apply open_set_P6 with (disc x0 (mkposreal _ (H2 _ H5))).
apply disc_P1.
unfold eq_Dom; split.
unfold included, disc; simpl; intros; split.
rewrite <- (Rabs_Ropp (x0 - x1)); rewrite Ropp_minus_distr; apply H6.
apply H5.
unfold included, disc; simpl; intros; elim H6; intros;
rewrite <- (Rabs_Ropp (x1 - x0)); rewrite Ropp_minus_distr;
apply H7.
apply open_set_P6 with (fun z:R => False).
apply open_set_P4.
unfold eq_Dom; split.
unfold included; intros; elim H6.
unfold included; intros; elim H6; intros; elim H5; assumption.
intros; elim H3; intros; unfold g in H4; elim H4; clear H4; intros _ H4;
apply H4.
intros; unfold Rdiv; apply Rmult_lt_0_compat.
apply Rabs_pos_lt; apply Rminus_eq_contra; red; intro;
rewrite H3 in H2; elim H1; apply H2.
apply Rinv_0_lt_compat; prove_sup0.
Qed.
(**********)
Lemma compact_EMP : compact (fun _:R => False).
Proof.
unfold compact; intros; exists (fun x:R => False);
unfold covering_finite; split.
unfold covering; intros; elim H0.
unfold family_finite; unfold domain_finite; exists nil; intro.
split.
simpl; unfold intersection_domain; intros; elim H0.
elim H0; clear H0; intros _ H0; elim H0.
simpl; intro; elim H0.
Qed.
Lemma compact_eqDom :
forall X1 X2:R -> Prop, compact X1 -> X1 =_D X2 -> compact X2.
Proof.
unfold compact; intros; unfold eq_Dom in H0; elim H0; clear H0;
unfold included; intros; assert (H3 : covering_open_set X1 f0).
unfold covering_open_set; unfold covering_open_set in H1; elim H1;
clear H1; intros; split.
unfold covering in H1; unfold covering; intros;
apply (H1 _ (H0 _ H4)).
apply H3.
elim (H _ H3); intros D H4; exists D; unfold covering_finite;
unfold covering_finite in H4; elim H4; intros; split.
unfold covering in H5; unfold covering; intros;
apply (H5 _ (H2 _ H7)).
apply H6.
Qed.
(** Borel-Lebesgue's lemma *)
Lemma compact_P3 : forall a b:R, compact (fun c:R => a <= c <= b).
Proof.
intros; case (Rle_dec a b); intro.
unfold compact; intros;
set
(A :=
fun x:R =>
a <= x <= b /\
(exists D : R -> Prop,
covering_finite (fun c:R => a <= c <= x) (subfamily f0 D)));
cut (A a).
intro; cut (bound A).
intro; cut (exists a0 : R, A a0).
intro; assert (H3 := completeness A H1 H2); elim H3; clear H3; intros m H3;
unfold is_lub in H3; cut (a <= m <= b).
intro; unfold covering_open_set in H; elim H; clear H; intros;
unfold covering in H; assert (H6 := H m H4); elim H6;
clear H6; intros y0 H6; unfold family_open_set in H5;
assert (H7 := H5 y0); unfold open_set in H7; assert (H8 := H7 m H6);
unfold neighbourhood in H8; elim H8; clear H8; intros eps H8;
cut (exists x : R, A x /\ m - eps < x <= m).
intro; elim H9; clear H9; intros x H9; elim H9; clear H9; intros;
case (Req_dec m b); intro.
rewrite H11 in H10; rewrite H11 in H8; unfold A in H9; elim H9; clear H9;
intros; elim H12; clear H12; intros Dx H12;
set (Db := fun x:R => Dx x \/ x = y0); exists Db;
unfold covering_finite; split.
unfold covering; unfold covering_finite in H12; elim H12; clear H12;
intros; unfold covering in H12; case (Rle_dec x0 x);
intro.
cut (a <= x0 <= x).
intro; assert (H16 := H12 x0 H15); elim H16; clear H16; intros; exists x1;
simpl in H16; simpl; unfold Db; elim H16;
clear H16; intros; split; [ apply H16 | left; apply H17 ].
split.
elim H14; intros; assumption.
assumption.
exists y0; simpl; split.
apply H8; unfold disc; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr;
rewrite Rabs_right.
apply Rlt_trans with (b - x).
unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_gt_contravar;
auto with real.
elim H10; intros H15 _; apply Rplus_lt_reg_r with (x - eps);
replace (x - eps + (b - x)) with (b - eps);
[ replace (x - eps + eps) with x; [ apply H15 | ring ] | ring ].
apply Rge_minus; apply Rle_ge; elim H14; intros _ H15; apply H15.
unfold Db; right; reflexivity.
unfold family_finite; unfold domain_finite;
unfold covering_finite in H12; elim H12; clear H12;
intros; unfold family_finite in H13; unfold domain_finite in H13;
elim H13; clear H13; intros l H13; exists (cons y0 l);
intro; split.
intro; simpl in H14; unfold intersection_domain in H14; elim (H13 x0);
clear H13; intros; case (Req_dec x0 y0); intro.
simpl; left; apply H16.
simpl; right; apply H13.
simpl; unfold intersection_domain; unfold Db in H14;
decompose [and or] H14.
split; assumption.
elim H16; assumption.
intro; simpl in H14; elim H14; intro; simpl;
unfold intersection_domain.
split.
apply (cond_fam f0); rewrite H15; exists m; apply H6.
unfold Db; right; assumption.
simpl; unfold intersection_domain; elim (H13 x0).
intros _ H16; assert (H17 := H16 H15); simpl in H17;
unfold intersection_domain in H17; split.
elim H17; intros; assumption.
unfold Db; left; elim H17; intros; assumption.
set (m' := Rmin (m + eps / 2) b); cut (A m').
intro; elim H3; intros; unfold is_upper_bound in H13;
assert (H15 := H13 m' H12); cut (m < m').
intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H15 H16)).
unfold m'; unfold Rmin; case (Rle_dec (m + eps / 2) b); intro.
pattern m at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ].
elim H4; intros.
elim H17; intro.
assumption.
elim H11; assumption.
unfold A; split.
split.
apply Rle_trans with m.
elim H4; intros; assumption.
unfold m'; unfold Rmin; case (Rle_dec (m + eps / 2) b); intro.
pattern m at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ].
elim H4; intros.
elim H13; intro.
assumption.
elim H11; assumption.
unfold m'; apply Rmin_r.
unfold A in H9; elim H9; clear H9; intros; elim H12; clear H12; intros Dx H12;
set (Db := fun x:R => Dx x \/ x = y0); exists Db;
unfold covering_finite; split.
unfold covering; unfold covering_finite in H12; elim H12; clear H12;
intros; unfold covering in H12; case (Rle_dec x0 x);
intro.
cut (a <= x0 <= x).
intro; assert (H16 := H12 x0 H15); elim H16; clear H16; intros; exists x1;
simpl in H16; simpl; unfold Db.
elim H16; clear H16; intros; split; [ apply H16 | left; apply H17 ].
elim H14; intros; split; assumption.
exists y0; simpl; split.
apply H8; unfold disc; unfold Rabs; case (Rcase_abs (x0 - m));
intro.
rewrite Ropp_minus_distr; apply Rlt_trans with (m - x).
unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_gt_contravar;
auto with real.
apply Rplus_lt_reg_r with (x - eps);
replace (x - eps + (m - x)) with (m - eps).
replace (x - eps + eps) with x.
elim H10; intros; assumption.
ring.
ring.
apply Rle_lt_trans with (m' - m).
unfold Rminus; do 2 rewrite <- (Rplus_comm (- m));
apply Rplus_le_compat_l; elim H14; intros; assumption.
apply Rplus_lt_reg_r with m; replace (m + (m' - m)) with m'.
apply Rle_lt_trans with (m + eps / 2).
unfold m'; apply Rmin_l.
apply Rplus_lt_compat_l; apply Rmult_lt_reg_l with 2.
prove_sup0.
unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l; pattern (pos eps) at 1; rewrite <- Rplus_0_r;
rewrite double; apply Rplus_lt_compat_l; apply (cond_pos eps).
discrR.
ring.
unfold Db; right; reflexivity.
unfold family_finite; unfold domain_finite;
unfold covering_finite in H12; elim H12; clear H12;
intros; unfold family_finite in H13; unfold domain_finite in H13;
elim H13; clear H13; intros l H13; exists (cons y0 l);
intro; split.
intro; simpl in H14; unfold intersection_domain in H14; elim (H13 x0);
clear H13; intros; case (Req_dec x0 y0); intro.
simpl; left; apply H16.
simpl; right; apply H13; simpl;
unfold intersection_domain; unfold Db in H14;
decompose [and or] H14.
split; assumption.
elim H16; assumption.
intro; simpl in H14; elim H14; intro; simpl;
unfold intersection_domain.
split.
apply (cond_fam f0); rewrite H15; exists m; apply H6.
unfold Db; right; assumption.
elim (H13 x0); intros _ H16.
assert (H17 := H16 H15).
simpl in H17.
unfold intersection_domain in H17.
split.
elim H17; intros; assumption.
unfold Db; left; elim H17; intros; assumption.
elim (classic (exists x : R, A x /\ m - eps < x <= m)); intro.
assumption.
elim H3; intros; cut (is_upper_bound A (m - eps)).
intro; assert (H13 := H11 _ H12); cut (m - eps < m).
intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H13 H14)).
pattern m at 2; rewrite <- Rplus_0_r; unfold Rminus;
apply Rplus_lt_compat_l; apply Ropp_lt_cancel; rewrite Ropp_involutive;
rewrite Ropp_0; apply (cond_pos eps).
set (P := fun n:R => A n /\ m - eps < n <= m);
assert (H12 := not_ex_all_not _ P H9); unfold P in H12;
unfold is_upper_bound; intros;
assert (H14 := not_and_or _ _ (H12 x)); elim H14;
intro.
elim H15; apply H13.
elim (not_and_or _ _ H15); intro.
case (Rle_dec x (m - eps)); intro.
assumption.
elim H16; auto with real.
unfold is_upper_bound in H10; assert (H17 := H10 x H13); elim H16; apply H17.
elim H3; clear H3; intros.
unfold is_upper_bound in H3.
split.
apply (H3 _ H0).
apply (H4 b); unfold is_upper_bound; intros; unfold A in H5; elim H5;
clear H5; intros H5 _; elim H5; clear H5; intros _ H5;
apply H5.
exists a; apply H0.
unfold bound; exists b; unfold is_upper_bound; intros;
unfold A in H1; elim H1; clear H1; intros H1 _; elim H1;
clear H1; intros _ H1; apply H1.
unfold A; split.
split; [ right; reflexivity | apply r ].
unfold covering_open_set in H; elim H; clear H; intros; unfold covering in H;
cut (a <= a <= b).
intro; elim (H _ H1); intros y0 H2; set (D' := fun x:R => x = y0); exists D';
unfold covering_finite; split.
unfold covering; simpl; intros; cut (x = a).
intro; exists y0; split.
rewrite H4; apply H2.
unfold D'; reflexivity.
elim H3; intros; apply Rle_antisym; assumption.
unfold family_finite; unfold domain_finite;
exists (cons y0 nil); intro; split.
simpl; unfold intersection_domain; intro; elim H3; clear H3;
intros; unfold D' in H4; left; apply H4.
simpl; unfold intersection_domain; intro; elim H3; intro.
split; [ rewrite H4; apply (cond_fam f0); exists a; apply H2 | apply H4 ].
elim H4.
split; [ right; reflexivity | apply r ].
apply compact_eqDom with (fun c:R => False).
apply compact_EMP.
unfold eq_Dom; split.
unfold included; intros; elim H.
unfold included; intros; elim H; clear H; intros;
assert (H1 := Rle_trans _ _ _ H H0); elim n; apply H1.
Qed.
Lemma compact_P4 :
forall X F:R -> Prop, compact X -> closed_set F -> included F X -> compact F.
Proof.
unfold compact; intros; elim (classic (exists z : R, F z));
intro Hyp_F_NE.
set (D := ind f0); set (g := f f0); unfold closed_set in H0.
set (g' := fun x y:R => f0 x y \/ complementary F y /\ D x).
set (D' := D).
cut (forall x:R, (exists y : R, g' x y) -> D' x).
intro; set (f' := mkfamily D' g' H3); cut (covering_open_set X f').
intro; elim (H _ H4); intros DX H5; exists DX.
unfold covering_finite; unfold covering_finite in H5; elim H5;
clear H5; intros.
split.
unfold covering; unfold covering in H5; intros.
elim (H5 _ (H1 _ H7)); intros y0 H8; exists y0; simpl in H8; simpl;
elim H8; clear H8; intros.
split.
unfold g' in H8; elim H8; intro.
apply H10.
elim H10; intros H11 _; unfold complementary in H11; elim H11; apply H7.
apply H9.
unfold family_finite; unfold domain_finite;
unfold family_finite in H6; unfold domain_finite in H6;
elim H6; clear H6; intros l H6; exists l; intro; assert (H7 := H6 x);
elim H7; clear H7; intros.
split.
intro; apply H7; simpl; unfold intersection_domain;
simpl in H9; unfold intersection_domain in H9; unfold D';
apply H9.
intro; assert (H10 := H8 H9); simpl in H10; unfold intersection_domain in H10;
simpl; unfold intersection_domain;
unfold D' in H10; apply H10.
unfold covering_open_set; unfold covering_open_set in H2; elim H2;
clear H2; intros.
split.
unfold covering; unfold covering in H2; intros.
elim (classic (F x)); intro.
elim (H2 _ H6); intros y0 H7; exists y0; simpl; unfold g';
left; assumption.
cut (exists z : R, D z).
intro; elim H7; clear H7; intros x0 H7; exists x0; simpl;
unfold g'; right.
split.
unfold complementary; apply H6.
apply H7.
elim Hyp_F_NE; intros z0 H7.
assert (H8 := H2 _ H7).
elim H8; clear H8; intros t H8; exists t; apply (cond_fam f0); exists z0;
apply H8.
unfold family_open_set; intro; simpl; unfold g';
elim (classic (D x)); intro.
apply open_set_P6 with (union_domain (f0 x) (complementary F)).
apply open_set_P2.
unfold family_open_set in H4; apply H4.
apply H0.
unfold eq_Dom; split.
unfold included, union_domain, complementary; intros.
elim H6; intro; [ left; apply H7 | right; split; assumption ].
unfold included, union_domain, complementary; intros.
elim H6; intro; [ left; apply H7 | right; elim H7; intros; apply H8 ].
apply open_set_P6 with (f0 x).
unfold family_open_set in H4; apply H4.
unfold eq_Dom; split.
unfold included, complementary; intros; left; apply H6.
unfold included, complementary; intros.
elim H6; intro.
apply H7.
elim H7; intros _ H8; elim H5; apply H8.
intros; elim H3; intros y0 H4; unfold g' in H4; elim H4; intro.
apply (cond_fam f0); exists y0; apply H5.
elim H5; clear H5; intros _ H5; apply H5.
(* Cas ou F est l'ensemble vide *)
cut (compact F).
intro; apply (H3 f0 H2).
apply compact_eqDom with (fun _:R => False).
apply compact_EMP.
unfold eq_Dom; split.
unfold included; intros; elim H3.
assert (H3 := not_ex_all_not _ _ Hyp_F_NE); unfold included; intros;
elim (H3 x); apply H4.
Qed.
(**********)
Lemma compact_P5 : forall X:R -> Prop, closed_set X -> bounded X -> compact X.
Proof.
intros; unfold bounded in H0.
elim H0; clear H0; intros m H0.
elim H0; clear H0; intros M H0.
assert (H1 := compact_P3 m M).
apply (compact_P4 (fun c:R => m <= c <= M) X H1 H H0).
Qed.
(**********)
Lemma compact_carac :
forall X:R -> Prop, compact X <-> closed_set X /\ bounded X.
Proof.
intro; split.
intro; split; [ apply (compact_P2 _ H) | apply (compact_P1 _ H) ].
intro; elim H; clear H; intros; apply (compact_P5 _ H H0).
Qed.
Definition image_dir (f:R -> R) (D:R -> Prop) (x:R) : Prop :=
exists y : R, x = f y /\ D y.
(**********)
Lemma continuity_compact :
forall (f:R -> R) (X:R -> Prop),
(forall x:R, continuity_pt f x) -> compact X -> compact (image_dir f X).
Proof.
unfold compact; intros; unfold covering_open_set in H1.
elim H1; clear H1; intros.
set (D := ind f1).
set (g := fun x y:R => image_rec f0 (f1 x) y).
cut (forall x:R, (exists y : R, g x y) -> D x).
intro; set (f' := mkfamily D g H3).
cut (covering_open_set X f').
intro; elim (H0 f' H4); intros D' H5; exists D'.
unfold covering_finite in H5; elim H5; clear H5; intros;
unfold covering_finite; split.
unfold covering, image_dir; simpl; unfold covering in H5;
intros; elim H7; intros y H8; elim H8; intros; assert (H11 := H5 _ H10);
simpl in H11; elim H11; intros z H12; exists z; unfold g in H12;
unfold image_rec in H12; rewrite H9; apply H12.
unfold family_finite in H6; unfold domain_finite in H6;
unfold family_finite; unfold domain_finite;
elim H6; intros l H7; exists l; intro; elim (H7 x);
intros; split; intro.
apply H8; simpl in H10; simpl; apply H10.
apply (H9 H10).
unfold covering_open_set; split.
unfold covering; intros; simpl; unfold covering in H1;
unfold image_dir in H1; unfold g; unfold image_rec;
apply H1.
exists x; split; [ reflexivity | apply H4 ].
unfold family_open_set; unfold family_open_set in H2; intro;
simpl; unfold g;
cut ((fun y:R => image_rec f0 (f1 x) y) = image_rec f0 (f1 x)).
intro; rewrite H4.
apply (continuity_P2 f0 (f1 x) H (H2 x)).
reflexivity.
intros; apply (cond_fam f1); unfold g in H3; unfold image_rec in H3; elim H3;
intros; exists (f0 x0); apply H4.
Qed.
Lemma Rlt_Rminus : forall a b:R, a < b -> 0 < b - a.
Proof.
intros; apply Rplus_lt_reg_r with a; rewrite Rplus_0_r;
replace (a + (b - a)) with b; [ assumption | ring ].
Qed.
Lemma prolongement_C0 :
forall (f:R -> R) (a b:R),
a <= b ->
(forall c:R, a <= c <= b -> continuity_pt f c) ->
exists g : R -> R,
continuity g /\ (forall c:R, a <= c <= b -> g c = f c).
Proof.
intros; elim H; intro.
set
(h :=
fun x:R =>
match Rle_dec x a with
| left _ => f0 a
| right _ =>
match Rle_dec x b with
| left _ => f0 x
| right _ => f0 b
end
end).
assert (H2 : 0 < b - a).
apply Rlt_Rminus; assumption.
exists h; split.
unfold continuity; intro; case (Rtotal_order x a); intro.
unfold continuity_pt; unfold continue_in;
unfold limit1_in; unfold limit_in;
simpl; unfold R_dist; intros; exists (a - x);
split.
change (0 < a - x); apply Rlt_Rminus; assumption.
intros; elim H5; clear H5; intros _ H5; unfold h.
case (Rle_dec x a); intro.
case (Rle_dec x0 a); intro.
unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
elim n; left; apply Rplus_lt_reg_r with (- x);
do 2 rewrite (Rplus_comm (- x)); apply Rle_lt_trans with (Rabs (x0 - x)).
apply RRle_abs.
assumption.
elim n; left; assumption.
elim H3; intro.
assert (H5 : a <= a <= b).
split; [ right; reflexivity | left; assumption ].
assert (H6 := H0 _ H5); unfold continuity_pt in H6; unfold continue_in in H6;
unfold limit1_in in H6; unfold limit_in in H6; simpl in H6;
unfold R_dist in H6; unfold continuity_pt;
unfold continue_in; unfold limit1_in;
unfold limit_in; simpl; unfold R_dist;
intros; elim (H6 _ H7); intros; exists (Rmin x0 (b - a));
split.
unfold Rmin; case (Rle_dec x0 (b - a)); intro.
elim H8; intros; assumption.
change (0 < b - a); apply Rlt_Rminus; assumption.
intros; elim H9; clear H9; intros _ H9; cut (x1 < b).
intro; unfold h; case (Rle_dec x a); intro.
case (Rle_dec x1 a); intro.
unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
case (Rle_dec x1 b); intro.
elim H8; intros; apply H12; split.
unfold D_x, no_cond; split.
trivial.
red; intro; elim n; right; symmetry ; assumption.
apply Rlt_le_trans with (Rmin x0 (b - a)).
rewrite H4 in H9; apply H9.
apply Rmin_l.
elim n0; left; assumption.
elim n; right; assumption.
apply Rplus_lt_reg_r with (- a); do 2 rewrite (Rplus_comm (- a));
rewrite H4 in H9; apply Rle_lt_trans with (Rabs (x1 - a)).
apply RRle_abs.
apply Rlt_le_trans with (Rmin x0 (b - a)).
assumption.
apply Rmin_r.
case (Rtotal_order x b); intro.
assert (H6 : a <= x <= b).
split; left; assumption.
assert (H7 := H0 _ H6); unfold continuity_pt in H7; unfold continue_in in H7;
unfold limit1_in in H7; unfold limit_in in H7; simpl in H7;
unfold R_dist in H7; unfold continuity_pt;
unfold continue_in; unfold limit1_in;
unfold limit_in; simpl; unfold R_dist;
intros; elim (H7 _ H8); intros; elim H9; clear H9;
intros.
assert (H11 : 0 < x - a).
apply Rlt_Rminus; assumption.
assert (H12 : 0 < b - x).
apply Rlt_Rminus; assumption.
exists (Rmin x0 (Rmin (x - a) (b - x))); split.
unfold Rmin; case (Rle_dec (x - a) (b - x)); intro.
case (Rle_dec x0 (x - a)); intro.
assumption.
assumption.
case (Rle_dec x0 (b - x)); intro.
assumption.
assumption.
intros; elim H13; clear H13; intros; cut (a < x1 < b).
intro; elim H15; clear H15; intros; unfold h; case (Rle_dec x a);
intro.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H4)).
case (Rle_dec x b); intro.
case (Rle_dec x1 a); intro.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r0 H15)).
case (Rle_dec x1 b); intro.
apply H10; split.
assumption.
apply Rlt_le_trans with (Rmin x0 (Rmin (x - a) (b - x))).
assumption.
apply Rmin_l.
elim n1; left; assumption.
elim n0; left; assumption.
split.
apply Ropp_lt_cancel; apply Rplus_lt_reg_r with x;
apply Rle_lt_trans with (Rabs (x1 - x)).
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply RRle_abs.
apply Rlt_le_trans with (Rmin x0 (Rmin (x - a) (b - x))).
assumption.
apply Rle_trans with (Rmin (x - a) (b - x)).
apply Rmin_r.
apply Rmin_l.
apply Rplus_lt_reg_r with (- x); do 2 rewrite (Rplus_comm (- x));
apply Rle_lt_trans with (Rabs (x1 - x)).
apply RRle_abs.
apply Rlt_le_trans with (Rmin x0 (Rmin (x - a) (b - x))).
assumption.
apply Rle_trans with (Rmin (x - a) (b - x)); apply Rmin_r.
elim H5; intro.
assert (H7 : a <= b <= b).
split; [ left; assumption | right; reflexivity ].
assert (H8 := H0 _ H7); unfold continuity_pt in H8; unfold continue_in in H8;
unfold limit1_in in H8; unfold limit_in in H8; simpl in H8;
unfold R_dist in H8; unfold continuity_pt;
unfold continue_in; unfold limit1_in;
unfold limit_in; simpl; unfold R_dist;
intros; elim (H8 _ H9); intros; exists (Rmin x0 (b - a));
split.
unfold Rmin; case (Rle_dec x0 (b - a)); intro.
elim H10; intros; assumption.
change (0 < b - a); apply Rlt_Rminus; assumption.
intros; elim H11; clear H11; intros _ H11; cut (a < x1).
intro; unfold h; case (Rle_dec x a); intro.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H4)).
case (Rle_dec x1 a); intro.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H12)).
case (Rle_dec x b); intro.
case (Rle_dec x1 b); intro.
rewrite H6; elim H10; intros; elim r0; intro.
apply H14; split.
unfold D_x, no_cond; split.
trivial.
red; intro; rewrite <- H16 in H15; elim (Rlt_irrefl _ H15).
rewrite H6 in H11; apply Rlt_le_trans with (Rmin x0 (b - a)).
apply H11.
apply Rmin_l.
rewrite H15; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
assumption.
rewrite H6; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
assumption.
elim n1; right; assumption.
rewrite H6 in H11; apply Ropp_lt_cancel; apply Rplus_lt_reg_r with b;
apply Rle_lt_trans with (Rabs (x1 - b)).
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply RRle_abs.
apply Rlt_le_trans with (Rmin x0 (b - a)).
assumption.
apply Rmin_r.
unfold continuity_pt; unfold continue_in;
unfold limit1_in; unfold limit_in;
simpl; unfold R_dist; intros; exists (x - b);
split.
change (0 < x - b); apply Rlt_Rminus; assumption.
intros; elim H8; clear H8; intros.
assert (H10 : b < x0).
apply Ropp_lt_cancel; apply Rplus_lt_reg_r with x;
apply Rle_lt_trans with (Rabs (x0 - x)).
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply RRle_abs.
assumption.
unfold h; case (Rle_dec x a); intro.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H4)).
case (Rle_dec x b); intro.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H6)).
case (Rle_dec x0 a); intro.
elim (Rlt_irrefl _ (Rlt_trans _ _ _ H1 (Rlt_le_trans _ _ _ H10 r))).
case (Rle_dec x0 b); intro.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H10)).
unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
intros; elim H3; intros; unfold h; case (Rle_dec c a); intro.
elim r; intro.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H4 H6)).
rewrite H6; reflexivity.
case (Rle_dec c b); intro.
reflexivity.
elim n0; assumption.
exists (fun _:R => f0 a); split.
apply derivable_continuous; apply (derivable_const (f0 a)).
intros; elim H2; intros; rewrite H1 in H3; cut (b = c).
intro; rewrite <- H5; rewrite H1; reflexivity.
apply Rle_antisym; assumption.
Qed.
(**********)
Lemma continuity_ab_maj :
forall (f:R -> R) (a b:R),
a <= b ->
(forall c:R, a <= c <= b -> continuity_pt f c) ->
exists Mx : R, (forall c:R, a <= c <= b -> f c <= f Mx) /\ a <= Mx <= b.
Proof.
intros;
cut
(exists g : R -> R,
continuity g /\ (forall c:R, a <= c <= b -> g c = f0 c)).
intro HypProl.
elim HypProl; intros g Hcont_eq.
elim Hcont_eq; clear Hcont_eq; intros Hcont Heq.
assert (H1 := compact_P3 a b).
assert (H2 := continuity_compact g (fun c:R => a <= c <= b) Hcont H1).
assert (H3 := compact_P2 _ H2).
assert (H4 := compact_P1 _ H2).
cut (bound (image_dir g (fun c:R => a <= c <= b))).
cut (exists x : R, image_dir g (fun c:R => a <= c <= b) x).
intros; assert (H7 := completeness _ H6 H5).
elim H7; clear H7; intros M H7; cut (image_dir g (fun c:R => a <= c <= b) M).
intro; unfold image_dir in H8; elim H8; clear H8; intros Mxx H8; elim H8;
clear H8; intros; exists Mxx; split.
intros; rewrite <- (Heq c H10); rewrite <- (Heq Mxx H9); intros;
rewrite <- H8; unfold is_lub in H7; elim H7; clear H7;
intros H7 _; unfold is_upper_bound in H7; apply H7;
unfold image_dir; exists c; split; [ reflexivity | apply H10 ].
apply H9.
elim (classic (image_dir g (fun c:R => a <= c <= b) M)); intro.
assumption.
cut
(exists eps : posreal,
(forall y:R,
~
intersection_domain (disc M eps)
(image_dir g (fun c:R => a <= c <= b)) y)).
intro; elim H9; clear H9; intros eps H9; unfold is_lub in H7; elim H7;
clear H7; intros;
cut (is_upper_bound (image_dir g (fun c:R => a <= c <= b)) (M - eps)).
intro; assert (H12 := H10 _ H11); cut (M - eps < M).
intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H12 H13)).
pattern M at 2; rewrite <- Rplus_0_r; unfold Rminus;
apply Rplus_lt_compat_l; apply Ropp_lt_cancel; rewrite Ropp_0;
rewrite Ropp_involutive; apply (cond_pos eps).
unfold is_upper_bound, image_dir; intros; cut (x <= M).
intro; case (Rle_dec x (M - eps)); intro.
apply r.
elim (H9 x); unfold intersection_domain, disc, image_dir; split.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; rewrite Rabs_right.
apply Rplus_lt_reg_r with (x - eps);
replace (x - eps + (M - x)) with (M - eps).
replace (x - eps + eps) with x.
auto with real.
ring.
ring.
apply Rge_minus; apply Rle_ge; apply H12.
apply H11.
apply H7; apply H11.
cut
(exists V : R -> Prop,
neighbourhood V M /\
(forall y:R,
~ intersection_domain V (image_dir g (fun c:R => a <= c <= b)) y)).
intro; elim H9; intros V H10; elim H10; clear H10; intros.
unfold neighbourhood in H10; elim H10; intros del H12; exists del; intros;
red; intro; elim (H11 y).
unfold intersection_domain; unfold intersection_domain in H13;
elim H13; clear H13; intros; split.
apply (H12 _ H13).
apply H14.
cut (~ point_adherent (image_dir g (fun c:R => a <= c <= b)) M).
intro; unfold point_adherent in H9.
assert
(H10 :=
not_all_ex_not _
(fun V:R -> Prop =>
neighbourhood V M ->
exists y : R,
intersection_domain V (image_dir g (fun c:R => a <= c <= b)) y) H9).
elim H10; intros V0 H11; exists V0; assert (H12 := imply_to_and _ _ H11);
elim H12; clear H12; intros.
split.
apply H12.
apply (not_ex_all_not _ _ H13).
red; intro; cut (adherence (image_dir g (fun c:R => a <= c <= b)) M).
intro; elim (closed_set_P1 (image_dir g (fun c:R => a <= c <= b)));
intros H11 _; assert (H12 := H11 H3).
elim H8.
unfold eq_Dom in H12; elim H12; clear H12; intros.
apply (H13 _ H10).
apply H9.
exists (g a); unfold image_dir; exists a; split.
reflexivity.
split; [ right; reflexivity | apply H ].
unfold bound; unfold bounded in H4; elim H4; clear H4; intros m H4;
elim H4; clear H4; intros M H4; exists M; unfold is_upper_bound;
intros; elim (H4 _ H5); intros _ H6; apply H6.
apply prolongement_C0; assumption.
Qed.
(**********)
Lemma continuity_ab_min :
forall (f:R -> R) (a b:R),
a <= b ->
(forall c:R, a <= c <= b -> continuity_pt f c) ->
exists mx : R, (forall c:R, a <= c <= b -> f mx <= f c) /\ a <= mx <= b.
Proof.
intros.
cut (forall c:R, a <= c <= b -> continuity_pt (- f0) c).
intro; assert (H2 := continuity_ab_maj (- f0)%F a b H H1); elim H2;
intros x0 H3; exists x0; intros; split.
intros; rewrite <- (Ropp_involutive (f0 x0));
rewrite <- (Ropp_involutive (f0 c)); apply Ropp_le_contravar;
elim H3; intros; unfold opp_fct in H5; apply H5; apply H4.
elim H3; intros; assumption.
intros.
assert (H2 := H0 _ H1).
apply (continuity_pt_opp _ _ H2).
Qed.
(********************************************************)
(** * Proof of Bolzano-Weierstrass theorem *)
(********************************************************)
Definition ValAdh (un:nat -> R) (x:R) : Prop :=
forall (V:R -> Prop) (N:nat),
neighbourhood V x -> exists p : nat, (N <= p)%nat /\ V (un p).
Definition intersection_family (f:family) (x:R) : Prop :=
forall y:R, ind f y -> f y x.
Lemma ValAdh_un_exists :
forall (un:nat -> R) (D:=fun x:R => exists n : nat, x = INR n)
(f:=
fun x:R =>
adherence
(fun y:R => (exists p : nat, y = un p /\ x <= INR p) /\ D x))
(x:R), (exists y : R, f x y) -> D x.
Proof.
intros; elim H; intros; unfold f in H0; unfold adherence in H0;
unfold point_adherent in H0;
assert (H1 : neighbourhood (disc x0 (mkposreal _ Rlt_0_1)) x0).
unfold neighbourhood, disc; exists (mkposreal _ Rlt_0_1);
unfold included; trivial.
elim (H0 _ H1); intros; unfold intersection_domain in H2; elim H2; intros;
elim H4; intros; apply H6.
Qed.
Definition ValAdh_un (un:nat -> R) : R -> Prop :=
let D := fun x:R => exists n : nat, x = INR n in
let f :=
fun x:R =>
adherence
(fun y:R => (exists p : nat, y = un p /\ x <= INR p) /\ D x) in
intersection_family (mkfamily D f (ValAdh_un_exists un)).
Lemma ValAdh_un_prop :
forall (un:nat -> R) (x:R), ValAdh un x <-> ValAdh_un un x.
Proof.
intros; split; intro.
unfold ValAdh in H; unfold ValAdh_un;
unfold intersection_family; simpl;
intros; elim H0; intros N H1; unfold adherence;
unfold point_adherent; intros; elim (H V N H2);
intros; exists (un x0); unfold intersection_domain;
elim H3; clear H3; intros; split.
assumption.
split.
exists x0; split; [ reflexivity | rewrite H1; apply (le_INR _ _ H3) ].
exists N; assumption.
unfold ValAdh; intros; unfold ValAdh_un in H;
unfold intersection_family in H; simpl in H;
assert
(H1 :
adherence
(fun y0:R =>
(exists p : nat, y0 = un p /\ INR N <= INR p) /\
(exists n : nat, INR N = INR n)) x).
apply H; exists N; reflexivity.
unfold adherence in H1; unfold point_adherent in H1; assert (H2 := H1 _ H0);
elim H2; intros; unfold intersection_domain in H3;
elim H3; clear H3; intros; elim H4; clear H4; intros;
elim H4; clear H4; intros; elim H4; clear H4; intros;
exists x1; split.
apply (INR_le _ _ H6).
rewrite H4 in H3; apply H3.
Qed.
Lemma adherence_P4 :
forall F G:R -> Prop, included F G -> included (adherence F) (adherence G).
Proof.
unfold adherence, included; unfold point_adherent; intros;
elim (H0 _ H1); unfold intersection_domain;
intros; elim H2; clear H2; intros; exists x0; split;
[ assumption | apply (H _ H3) ].
Qed.
Definition family_closed_set (f:family) : Prop :=
forall x:R, closed_set (f x).
Definition intersection_vide_in (D:R -> Prop) (f:family) : Prop :=
forall x:R,
(ind f x -> included (f x) D) /\
~ (exists y : R, intersection_family f y).
Definition intersection_vide_finite_in (D:R -> Prop)
(f:family) : Prop := intersection_vide_in D f /\ family_finite f.
(**********)
Lemma compact_P6 :
forall X:R -> Prop,
compact X ->
(exists z : R, X z) ->
forall g:family,
family_closed_set g ->
intersection_vide_in X g ->
exists D : R -> Prop, intersection_vide_finite_in X (subfamily g D).
Proof.
intros X H Hyp g H0 H1.
set (D' := ind g).
set (f' := fun x y:R => complementary (g x) y /\ D' x).
assert (H2 : forall x:R, (exists y : R, f' x y) -> D' x).
intros; elim H2; intros; unfold f' in H3; elim H3; intros; assumption.
set (f0 := mkfamily D' f' H2).
unfold compact in H; assert (H3 : covering_open_set X f0).
unfold covering_open_set; split.
unfold covering; intros; unfold intersection_vide_in in H1;
elim (H1 x); intros; unfold intersection_family in H5;
assert
(H6 := not_ex_all_not _ (fun y:R => forall y0:R, ind g y0 -> g y0 y) H5 x);
assert (H7 := not_all_ex_not _ (fun y0:R => ind g y0 -> g y0 x) H6);
elim H7; intros; exists x0; elim (imply_to_and _ _ H8);
intros; unfold f0; simpl; unfold f';
split; [ apply H10 | apply H9 ].
unfold family_open_set; intro; elim (classic (D' x)); intro.
apply open_set_P6 with (complementary (g x)).
unfold family_closed_set in H0; unfold closed_set in H0; apply H0.
unfold f0; simpl; unfold f'; unfold eq_Dom;
split.
unfold included; intros; split; [ apply H4 | apply H3 ].
unfold included; intros; elim H4; intros; assumption.
apply open_set_P6 with (fun _:R => False).
apply open_set_P4.
unfold eq_Dom; unfold included; split; intros;
[ elim H4
| simpl in H4; unfold f' in H4; elim H4; intros; elim H3; assumption ].
elim (H _ H3); intros SF H4; exists SF;
unfold intersection_vide_finite_in; split.
unfold intersection_vide_in; simpl; intros; split.
intros; unfold included; intros; unfold intersection_vide_in in H1;
elim (H1 x); intros; elim H6; intros; apply H7.
unfold intersection_domain in H5; elim H5; intros; assumption.
assumption.
elim (classic (exists y : R, intersection_domain (ind g) SF y)); intro Hyp'.
red; intro; elim H5; intros; unfold intersection_family in H6;
simpl in H6.
cut (X x0).
intro; unfold covering_finite in H4; elim H4; clear H4; intros H4 _;
unfold covering in H4; elim (H4 x0 H7); intros; simpl in H8;
unfold intersection_domain in H6; cut (ind g x1 /\ SF x1).
intro; assert (H10 := H6 x1 H9); elim H10; clear H10; intros H10 _; elim H8;
clear H8; intros H8 _; unfold f' in H8; unfold complementary in H8;
elim H8; clear H8; intros H8 _; elim H8; assumption.
split.
apply (cond_fam f0).
exists x0; elim H8; intros; assumption.
elim H8; intros; assumption.
unfold intersection_vide_in in H1; elim Hyp'; intros; assert (H8 := H6 _ H7);
elim H8; intros; cut (ind g x1).
intro; elim (H1 x1); intros; apply H12.
apply H11.
apply H9.
apply (cond_fam g); exists x0; assumption.
unfold covering_finite in H4; elim H4; clear H4; intros H4 _;
cut (exists z : R, X z).
intro; elim H5; clear H5; intros; unfold covering in H4; elim (H4 x0 H5);
intros; simpl in H6; elim Hyp'; exists x1; elim H6;
intros; unfold intersection_domain; split.
apply (cond_fam f0); exists x0; apply H7.
apply H8.
apply Hyp.
unfold covering_finite in H4; elim H4; clear H4; intros;
unfold family_finite in H5; unfold domain_finite in H5;
unfold family_finite; unfold domain_finite;
elim H5; clear H5; intros l H5; exists l; intro; elim (H5 x);
intros; split; intro;
[ apply H6; simpl; simpl in H8; apply H8 | apply (H7 H8) ].
Qed.
Theorem Bolzano_Weierstrass :
forall (un:nat -> R) (X:R -> Prop),
compact X -> (forall n:nat, X (un n)) -> exists l : R, ValAdh un l.
Proof.
intros; cut (exists l : R, ValAdh_un un l).
intro; elim H1; intros; exists x; elim (ValAdh_un_prop un x); intros;
apply (H4 H2).
assert (H1 : exists z : R, X z).
exists (un 0%nat); apply H0.
set (D := fun x:R => exists n : nat, x = INR n).
set
(g :=
fun x:R =>
adherence (fun y:R => (exists p : nat, y = un p /\ x <= INR p) /\ D x)).
assert (H2 : forall x:R, (exists y : R, g x y) -> D x).
intros; elim H2; intros; unfold g in H3; unfold adherence in H3;
unfold point_adherent in H3.
assert (H4 : neighbourhood (disc x0 (mkposreal _ Rlt_0_1)) x0).
unfold neighbourhood; exists (mkposreal _ Rlt_0_1);
unfold included; trivial.
elim (H3 _ H4); intros; unfold intersection_domain in H5; decompose [and] H5;
assumption.
set (f0 := mkfamily D g H2).
assert (H3 := compact_P6 X H H1 f0).
elim (classic (exists l : R, ValAdh_un un l)); intro.
assumption.
cut (family_closed_set f0).
intro; cut (intersection_vide_in X f0).
intro; assert (H7 := H3 H5 H6).
elim H7; intros SF H8; unfold intersection_vide_finite_in in H8; elim H8;
clear H8; intros; unfold intersection_vide_in in H8;
elim (H8 0); intros _ H10; elim H10; unfold family_finite in H9;
unfold domain_finite in H9; elim H9; clear H9; intros l H9;
set (r := MaxRlist l); cut (D r).
intro; unfold D in H11; elim H11; intros; exists (un x);
unfold intersection_family; simpl;
unfold intersection_domain; intros; split.
unfold g; apply adherence_P1; split.
exists x; split;
[ reflexivity
| rewrite <- H12; unfold r; apply MaxRlist_P1; elim (H9 y); intros;
apply H14; simpl; apply H13 ].
elim H13; intros; assumption.
elim H13; intros; assumption.
elim (H9 r); intros.
simpl in H12; unfold intersection_domain in H12; cut (In r l).
intro; elim (H12 H13); intros; assumption.
unfold r; apply MaxRlist_P2;
cut (exists z : R, intersection_domain (ind f0) SF z).
intro; elim H13; intros; elim (H9 x); intros; simpl in H15;
assert (H17 := H15 H14); exists x; apply H17.
elim (classic (exists z : R, intersection_domain (ind f0) SF z)); intro.
assumption.
elim (H8 0); intros _ H14; elim H1; intros;
assert
(H16 :=
not_ex_all_not _ (fun y:R => intersection_family (subfamily f0 SF) y) H14);
assert
(H17 :=
not_ex_all_not _ (fun z:R => intersection_domain (ind f0) SF z) H13);
assert (H18 := H16 x); unfold intersection_family in H18;
simpl in H18;
assert
(H19 :=
not_all_ex_not _ (fun y:R => intersection_domain D SF y -> g y x /\ SF y)
H18); elim H19; intros; assert (H21 := imply_to_and _ _ H20);
elim (H17 x0); elim H21; intros; assumption.
unfold intersection_vide_in; intros; split.
intro; simpl in H6; unfold f0; simpl; unfold g;
apply included_trans with (adherence X).
apply adherence_P4.
unfold included; intros; elim H7; intros; elim H8; intros; elim H10;
intros; rewrite H11; apply H0.
apply adherence_P2; apply compact_P2; assumption.
apply H4.
unfold family_closed_set; unfold f0; simpl;
unfold g; intro; apply adherence_P3.
Qed.
(********************************************************)
(** * Proof of Heine's theorem *)
(********************************************************)
Definition uniform_continuity (f:R -> R) (X:R -> Prop) : Prop :=
forall eps:posreal,
exists delta : posreal,
(forall x y:R,
X x -> X y -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps).
Lemma is_lub_u :
forall (E:R -> Prop) (x y:R), is_lub E x -> is_lub E y -> x = y.
Proof.
unfold is_lub; intros; elim H; elim H0; intros; apply Rle_antisym;
[ apply (H4 _ H1) | apply (H2 _ H3) ].
Qed.
Lemma domain_P1 :
forall X:R -> Prop,
~ (exists y : R, X y) \/
(exists y : R, X y /\ (forall x:R, X x -> x = y)) \/
(exists x : R, (exists y : R, X x /\ X y /\ x <> y)).
Proof.
intro; elim (classic (exists y : R, X y)); intro.
right; elim H; intros; elim (classic (exists y : R, X y /\ y <> x)); intro.
right; elim H1; intros; elim H2; intros; exists x; exists x0; intros.
split;
[ assumption
| split; [ assumption | apply (not_eq_sym (A:=R)); assumption ] ].
left; exists x; split.
assumption.
intros; case (Req_dec x0 x); intro.
assumption.
elim H1; exists x0; split; assumption.
left; assumption.
Qed.
Theorem Heine :
forall (f:R -> R) (X:R -> Prop),
compact X ->
(forall x:R, X x -> continuity_pt f x) -> uniform_continuity f X.
Proof.
intros f0 X H0 H; elim (domain_P1 X); intro Hyp.
(* X is empty *)
unfold uniform_continuity; intros; exists (mkposreal _ Rlt_0_1);
intros; elim Hyp; exists x; assumption.
elim Hyp; clear Hyp; intro Hyp.
(* X has only one element *)
unfold uniform_continuity; intros; exists (mkposreal _ Rlt_0_1);
intros; elim Hyp; clear Hyp; intros; elim H4; clear H4;
intros; assert (H6 := H5 _ H1); assert (H7 := H5 _ H2);
rewrite H6; rewrite H7; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0; apply (cond_pos eps).
(* X has at least two distinct elements *)
assert
(X_enc :
exists m : R, (exists M : R, (forall x:R, X x -> m <= x <= M) /\ m < M)).
assert (H1 := compact_P1 X H0); unfold bounded in H1; elim H1; intros;
elim H2; intros; exists x; exists x0; split.
apply H3.
elim Hyp; intros; elim H4; intros; decompose [and] H5;
assert (H10 := H3 _ H6); assert (H11 := H3 _ H8);
elim H10; intros; elim H11; intros; case (total_order_T x x0);
intro.
elim s; intro.
assumption.
rewrite b in H13; rewrite b in H7; elim H9; apply Rle_antisym;
apply Rle_trans with x0; assumption.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H13 H14) r)).
elim X_enc; clear X_enc; intros m X_enc; elim X_enc; clear X_enc;
intros M X_enc; elim X_enc; clear X_enc Hyp; intros X_enc Hyp;
unfold uniform_continuity; intro;
assert (H1 : forall t:posreal, 0 < t / 2).
intro; unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos t) | apply Rinv_0_lt_compat; prove_sup0 ].
set
(g :=
fun x y:R =>
X x /\
(exists del : posreal,
(forall z:R, Rabs (z - x) < del -> Rabs (f0 z - f0 x) < eps / 2) /\
is_lub
(fun zeta:R =>
0 < zeta <= M - m /\
(forall z:R, Rabs (z - x) < zeta -> Rabs (f0 z - f0 x) < eps / 2))
del /\ disc x (mkposreal (del / 2) (H1 del)) y)).
assert (H2 : forall x:R, (exists y : R, g x y) -> X x).
intros; elim H2; intros; unfold g in H3; elim H3; clear H3; intros H3 _;
apply H3.
set (f' := mkfamily X g H2); unfold compact in H0;
assert (H3 : covering_open_set X f').
unfold covering_open_set; split.
unfold covering; intros; exists x; simpl; unfold g;
split.
assumption.
assert (H4 := H _ H3); unfold continuity_pt in H4; unfold continue_in in H4;
unfold limit1_in in H4; unfold limit_in in H4; simpl in H4;
unfold R_dist in H4; elim (H4 (eps / 2) (H1 eps));
intros;
set
(E :=
fun zeta:R =>
0 < zeta <= M - m /\
(forall z:R, Rabs (z - x) < zeta -> Rabs (f0 z - f0 x) < eps / 2));
assert (H6 : bound E).
unfold bound; exists (M - m); unfold is_upper_bound;
unfold E; intros; elim H6; clear H6; intros H6 _;
elim H6; clear H6; intros _ H6; apply H6.
assert (H7 : exists x : R, E x).
elim H5; clear H5; intros; exists (Rmin x0 (M - m)); unfold E; intros;
split.
split.
unfold Rmin; case (Rle_dec x0 (M - m)); intro.
apply H5.
apply Rlt_Rminus; apply Hyp.
apply Rmin_r.
intros; case (Req_dec x z); intro.
rewrite H9; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply (H1 eps).
apply H7; split.
unfold D_x, no_cond; split; [ trivial | assumption ].
apply Rlt_le_trans with (Rmin x0 (M - m)); [ apply H8 | apply Rmin_l ].
assert (H8 := completeness _ H6 H7); elim H8; clear H8; intros;
cut (0 < x1 <= M - m).
intro; elim H8; clear H8; intros; exists (mkposreal _ H8); split.
intros; cut (exists alp : R, Rabs (z - x) < alp <= x1 /\ E alp).
intros; elim H11; intros; elim H12; clear H12; intros; unfold E in H13;
elim H13; intros; apply H15.
elim H12; intros; assumption.
elim (classic (exists alp : R, Rabs (z - x) < alp <= x1 /\ E alp)); intro.
assumption.
assert
(H12 :=
not_ex_all_not _ (fun alp:R => Rabs (z - x) < alp <= x1 /\ E alp) H11);
unfold is_lub in p; elim p; intros; cut (is_upper_bound E (Rabs (z - x))).
intro; assert (H16 := H14 _ H15);
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H10 H16)).
unfold is_upper_bound; intros; unfold is_upper_bound in H13;
assert (H16 := H13 _ H15); case (Rle_dec x2 (Rabs (z - x)));
intro.
assumption.
elim (H12 x2); split; [ split; [ auto with real | assumption ] | assumption ].
split.
apply p.
unfold disc; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0; simpl; unfold Rdiv;
apply Rmult_lt_0_compat; [ apply H8 | apply Rinv_0_lt_compat; prove_sup0 ].
elim H7; intros; unfold E in H8; elim H8; intros H9 _; elim H9; intros H10 _;
unfold is_lub in p; elim p; intros; unfold is_upper_bound in H12;
unfold is_upper_bound in H11; split.
apply Rlt_le_trans with x2; [ assumption | apply (H11 _ H8) ].
apply H12; intros; unfold E in H13; elim H13; intros; elim H14; intros;
assumption.
unfold family_open_set; intro; simpl; elim (classic (X x));
intro.
unfold g; unfold open_set; intros; elim H4; clear H4;
intros _ H4; elim H4; clear H4; intros; elim H4; clear H4;
intros; unfold neighbourhood; case (Req_dec x x0);
intro.
exists (mkposreal _ (H1 x1)); rewrite <- H6; unfold included; intros;
split.
assumption.
exists x1; split.
apply H4.
split.
elim H5; intros; apply H8.
apply H7.
set (d := x1 / 2 - Rabs (x0 - x)); assert (H7 : 0 < d).
unfold d; apply Rlt_Rminus; elim H5; clear H5; intros;
unfold disc in H7; apply H7.
exists (mkposreal _ H7); unfold included; intros; split.
assumption.
exists x1; split.
apply H4.
elim H5; intros; split.
assumption.
unfold disc in H8; simpl in H8; unfold disc; simpl;
unfold disc in H10; simpl in H10;
apply Rle_lt_trans with (Rabs (x2 - x0) + Rabs (x0 - x)).
replace (x2 - x) with (x2 - x0 + (x0 - x)); [ apply Rabs_triang | ring ].
replace (x1 / 2) with (d + Rabs (x0 - x)); [ idtac | unfold d; ring ].
do 2 rewrite <- (Rplus_comm (Rabs (x0 - x))); apply Rplus_lt_compat_l;
apply H8.
apply open_set_P6 with (fun _:R => False).
apply open_set_P4.
unfold eq_Dom; unfold included; intros; split.
intros; elim H4.
intros; unfold g in H4; elim H4; clear H4; intros H4 _; elim H3; apply H4.
elim (H0 _ H3); intros DF H4; unfold covering_finite in H4; elim H4; clear H4;
intros; unfold family_finite in H5; unfold domain_finite in H5;
unfold covering in H4; simpl in H4; simpl in H5; elim H5;
clear H5; intros l H5; unfold intersection_domain in H5;
cut
(forall x:R,
In x l ->
exists del : R,
0 < del /\
(forall z:R, Rabs (z - x) < del -> Rabs (f0 z - f0 x) < eps / 2) /\
included (g x) (fun z:R => Rabs (z - x) < del / 2)).
intros;
assert
(H7 :=
Rlist_P1 l
(fun x del:R =>
0 < del /\
(forall z:R, Rabs (z - x) < del -> Rabs (f0 z - f0 x) < eps / 2) /\
included (g x) (fun z:R => Rabs (z - x) < del / 2)) H6);
elim H7; clear H7; intros l' H7; elim H7; clear H7;
intros; set (D := MinRlist l'); cut (0 < D / 2).
intro; exists (mkposreal _ H9); intros; assert (H13 := H4 _ H10); elim H13;
clear H13; intros xi H13; assert (H14 : In xi l).
unfold g in H13; decompose [and] H13; elim (H5 xi); intros; apply H14; split;
assumption.
elim (pos_Rl_P2 l xi); intros H15 _; elim (H15 H14); intros i H16; elim H16;
intros; apply Rle_lt_trans with (Rabs (f0 x - f0 xi) + Rabs (f0 xi - f0 y)).
replace (f0 x - f0 y) with (f0 x - f0 xi + (f0 xi - f0 y));
[ apply Rabs_triang | ring ].
rewrite (double_var eps); apply Rplus_lt_compat.
assert (H19 := H8 i H17); elim H19; clear H19; intros; rewrite <- H18 in H20;
elim H20; clear H20; intros; apply H20; unfold included in H21;
apply Rlt_trans with (pos_Rl l' i / 2).
apply H21.
elim H13; clear H13; intros; assumption.
unfold Rdiv; apply Rmult_lt_reg_l with 2.
prove_sup0.
rewrite Rmult_comm; rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; pattern (pos_Rl l' i) at 1; rewrite <- Rplus_0_r;
rewrite double; apply Rplus_lt_compat_l; apply H19.
discrR.
assert (H19 := H8 i H17); elim H19; clear H19; intros; rewrite <- H18 in H20;
elim H20; clear H20; intros; rewrite <- Rabs_Ropp;
rewrite Ropp_minus_distr; apply H20; unfold included in H21;
elim H13; intros; assert (H24 := H21 x H22);
apply Rle_lt_trans with (Rabs (y - x) + Rabs (x - xi)).
replace (y - xi) with (y - x + (x - xi)); [ apply Rabs_triang | ring ].
rewrite (double_var (pos_Rl l' i)); apply Rplus_lt_compat.
apply Rlt_le_trans with (D / 2).
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H12.
unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ 2));
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; prove_sup0.
unfold D; apply MinRlist_P1; elim (pos_Rl_P2 l' (pos_Rl l' i));
intros; apply H26; exists i; split;
[ rewrite <- H7; assumption | reflexivity ].
assumption.
unfold Rdiv; apply Rmult_lt_0_compat;
[ unfold D; apply MinRlist_P2; intros; elim (pos_Rl_P2 l' y); intros;
elim (H10 H9); intros; elim H12; intros; rewrite H14;
rewrite <- H7 in H13; elim (H8 x H13); intros;
apply H15
| apply Rinv_0_lt_compat; prove_sup0 ].
intros; elim (H5 x); intros; elim (H8 H6); intros;
set
(E :=
fun zeta:R =>
0 < zeta <= M - m /\
(forall z:R, Rabs (z - x) < zeta -> Rabs (f0 z - f0 x) < eps / 2));
assert (H11 : bound E).
unfold bound; exists (M - m); unfold is_upper_bound;
unfold E; intros; elim H11; clear H11; intros H11 _;
elim H11; clear H11; intros _ H11; apply H11.
assert (H12 : exists x : R, E x).
assert (H13 := H _ H9); unfold continuity_pt in H13;
unfold continue_in in H13; unfold limit1_in in H13;
unfold limit_in in H13; simpl in H13; unfold R_dist in H13;
elim (H13 _ (H1 eps)); intros; elim H12; clear H12;
intros; exists (Rmin x0 (M - m)); unfold E;
intros; split.
split;
[ unfold Rmin; case (Rle_dec x0 (M - m)); intro;
[ apply H12 | apply Rlt_Rminus; apply Hyp ]
| apply Rmin_r ].
intros; case (Req_dec x z); intro.
rewrite H16; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply (H1 eps).
apply H14; split;
[ unfold D_x, no_cond; split; [ trivial | assumption ]
| apply Rlt_le_trans with (Rmin x0 (M - m)); [ apply H15 | apply Rmin_l ] ].
assert (H13 := completeness _ H11 H12); elim H13; clear H13; intros;
cut (0 < x0 <= M - m).
intro; elim H13; clear H13; intros; exists x0; split.
assumption.
split.
intros; cut (exists alp : R, Rabs (z - x) < alp <= x0 /\ E alp).
intros; elim H16; intros; elim H17; clear H17; intros; unfold E in H18;
elim H18; intros; apply H20; elim H17; intros; assumption.
elim (classic (exists alp : R, Rabs (z - x) < alp <= x0 /\ E alp)); intro.
assumption.
assert
(H17 :=
not_ex_all_not _ (fun alp:R => Rabs (z - x) < alp <= x0 /\ E alp) H16);
unfold is_lub in p; elim p; intros; cut (is_upper_bound E (Rabs (z - x))).
intro; assert (H21 := H19 _ H20);
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H15 H21)).
unfold is_upper_bound; intros; unfold is_upper_bound in H18;
assert (H21 := H18 _ H20); case (Rle_dec x1 (Rabs (z - x)));
intro.
assumption.
elim (H17 x1); split.
split; [ auto with real | assumption ].
assumption.
unfold included, g; intros; elim H15; intros; elim H17; intros;
decompose [and] H18; cut (x0 = x2).
intro; rewrite H20; apply H22.
unfold E in p; eapply is_lub_u.
apply p.
apply H21.
elim H12; intros; unfold E in H13; elim H13; intros H14 _; elim H14;
intros H15 _; unfold is_lub in p; elim p; intros;
unfold is_upper_bound in H16; unfold is_upper_bound in H17;
split.
apply Rlt_le_trans with x1; [ assumption | apply (H16 _ H13) ].
apply H17; intros; unfold E in H18; elim H18; intros; elim H19; intros;
assumption.
Qed.
|