summaryrefslogtreecommitdiff
path: root/theories/Reals/Rsigma.v
blob: cb31d3b2075fe7927a5f976f4451e7b03a4aa544 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Rsigma.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)

Require Import Rbase.
Require Import Rfunctions.
Require Import Rseries.
Require Import PartSum.
Open Local Scope R_scope.

Set Implicit Arguments.

Section Sigma.

  Variable f : nat -> R.

  Definition sigma (low high:nat) : R :=
    sum_f_R0 (fun k:nat => f (low + k)) (high - low).

  Theorem sigma_split :
    forall low high k:nat,
      (low <= k)%nat ->
      (k < high)%nat -> sigma low high = sigma low k + sigma (S k) high.
  Proof.
    intros; induction  k as [| k Hreck].
    cut (low = 0%nat).
    intro; rewrite H1; unfold sigma in |- *; rewrite <- minus_n_n;
      rewrite <- minus_n_O; simpl in |- *; replace (high - 1)%nat with (pred high).
    apply (decomp_sum (fun k:nat => f k)).
    assumption.
    apply pred_of_minus.
    inversion H; reflexivity.
    cut ((low <= k)%nat \/ low = S k).
    intro; elim H1; intro.
    replace (sigma low (S k)) with (sigma low k + f (S k)).
    rewrite Rplus_assoc;
      replace (f (S k) + sigma (S (S k)) high) with (sigma (S k) high).
    apply Hreck.
    assumption.
    apply lt_trans with (S k); [ apply lt_n_Sn | assumption ].
    unfold sigma in |- *; replace (high - S (S k))%nat with (pred (high - S k)).
    pattern (S k) at 3 in |- *; replace (S k) with (S k + 0)%nat;
      [ idtac | ring ].
    replace (sum_f_R0 (fun k0:nat => f (S (S k) + k0)) (pred (high - S k))) with
    (sum_f_R0 (fun k0:nat => f (S k + S k0)) (pred (high - S k))).
    apply (decomp_sum (fun i:nat => f (S k + i))).
    apply lt_minus_O_lt; assumption.
    apply sum_eq; intros; replace (S k + S i)%nat with (S (S k) + i)%nat.
    reflexivity.
    ring.
    replace (high - S (S k))%nat with (high - S k - 1)%nat.
    apply pred_of_minus.
    omega.
    unfold sigma in |- *; replace (S k - low)%nat with (S (k - low)).
    pattern (S k) at 1 in |- *; replace (S k) with (low + S (k - low))%nat.
    symmetry  in |- *; apply (tech5 (fun i:nat => f (low + i))).
    omega.
    omega.
    rewrite <- H2; unfold sigma in |- *; rewrite <- minus_n_n; simpl in |- *;
      replace (high - S low)%nat with (pred (high - low)).
    replace (sum_f_R0 (fun k0:nat => f (S (low + k0))) (pred (high - low))) with
    (sum_f_R0 (fun k0:nat => f (low + S k0)) (pred (high - low))).
    apply (decomp_sum (fun k0:nat => f (low + k0))).
    apply lt_minus_O_lt.
    apply le_lt_trans with (S k); [ rewrite H2; apply le_n | assumption ].
    apply sum_eq; intros; replace (S (low + i)) with (low + S i)%nat.
    reflexivity.
    ring.
    omega.
    inversion H; [ right; reflexivity | left; assumption ].
  Qed.

  Theorem sigma_diff :
    forall low high k:nat,
      (low <= k)%nat ->
      (k < high)%nat -> sigma low high - sigma low k = sigma (S k) high.
  Proof.
    intros low high k H1 H2; symmetry  in |- *; rewrite (sigma_split H1 H2); ring.
  Qed.

  Theorem sigma_diff_neg :
    forall low high k:nat,
      (low <= k)%nat ->
      (k < high)%nat -> sigma low k - sigma low high = - sigma (S k) high.
  Proof.
    intros low high k H1 H2; rewrite (sigma_split H1 H2); ring.
  Qed.

  Theorem sigma_first :
    forall low high:nat,
      (low < high)%nat -> sigma low high = f low + sigma (S low) high.
  Proof.
    intros low high H1; generalize (lt_le_S low high H1); intro H2;
      generalize (lt_le_weak low high H1); intro H3;
        replace (f low) with (sigma low low).
    apply sigma_split.
    apply le_n.
    assumption.
    unfold sigma in |- *; rewrite <- minus_n_n.
    simpl in |- *.
    replace (low + 0)%nat with low; [ reflexivity | ring ].
  Qed.

  Theorem sigma_last :
    forall low high:nat,
      (low < high)%nat -> sigma low high = f high + sigma low (pred high).
  Proof.
    intros low high H1; generalize (lt_le_S low high H1); intro H2;
      generalize (lt_le_weak low high H1); intro H3;
        replace (f high) with (sigma high high).
    rewrite Rplus_comm; cut (high = S (pred high)).
    intro; pattern high at 3 in |- *; rewrite H.
    apply sigma_split.
    apply le_S_n; rewrite <- H; apply lt_le_S; assumption.
    apply lt_pred_n_n; apply le_lt_trans with low; [ apply le_O_n | assumption ].
    apply S_pred with 0%nat; apply le_lt_trans with low;
      [ apply le_O_n | assumption ].
    unfold sigma in |- *; rewrite <- minus_n_n; simpl in |- *;
      replace (high + 0)%nat with high; [ reflexivity | ring ].
  Qed.

  Theorem sigma_eq_arg : forall low:nat, sigma low low = f low.
  Proof.
    intro; unfold sigma in |- *; rewrite <- minus_n_n.
    simpl in |- *; replace (low + 0)%nat with low; [ reflexivity | ring ].
  Qed.

End Sigma.