1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import Orders Rbase Rbasic_fun ROrderedType GenericMinMax.
(** * Maximum and Minimum of two real numbers *)
Local Open Scope R_scope.
(** The functions [Rmax] and [Rmin] implement indeed
a maximum and a minimum *)
Lemma Rmax_l : forall x y, y<=x -> Rmax x y = x.
Proof.
unfold Rmax. intros.
destruct Rle_dec as [H'|H']; [| apply Rnot_le_lt in H' ];
unfold Rle in *; intuition.
Qed.
Lemma Rmax_r : forall x y, x<=y -> Rmax x y = y.
Proof.
unfold Rmax. intros.
destruct Rle_dec as [H'|H']; [| apply Rnot_le_lt in H' ];
unfold Rle in *; intuition.
Qed.
Lemma Rmin_l : forall x y, x<=y -> Rmin x y = x.
Proof.
unfold Rmin. intros.
destruct Rle_dec as [H'|H']; [| apply Rnot_le_lt in H' ];
unfold Rle in *; intuition.
Qed.
Lemma Rmin_r : forall x y, y<=x -> Rmin x y = y.
Proof.
unfold Rmin. intros.
destruct Rle_dec as [H'|H']; [| apply Rnot_le_lt in H' ];
unfold Rle in *; intuition.
Qed.
Module RHasMinMax <: HasMinMax R_as_OT.
Definition max := Rmax.
Definition min := Rmin.
Definition max_l := Rmax_l.
Definition max_r := Rmax_r.
Definition min_l := Rmin_l.
Definition min_r := Rmin_r.
End RHasMinMax.
Module R.
(** We obtain hence all the generic properties of max and min. *)
Include UsualMinMaxProperties R_as_OT RHasMinMax.
(** * Properties specific to the [R] domain *)
(** Compatibilities (consequences of monotonicity) *)
Lemma plus_max_distr_l : forall n m p, Rmax (p + n) (p + m) = p + Rmax n m.
Proof.
intros. apply max_monotone.
intros x y. apply Rplus_le_compat_l.
Qed.
Lemma plus_max_distr_r : forall n m p, Rmax (n + p) (m + p) = Rmax n m + p.
Proof.
intros. rewrite (Rplus_comm n p), (Rplus_comm m p), (Rplus_comm _ p).
apply plus_max_distr_l.
Qed.
Lemma plus_min_distr_l : forall n m p, Rmin (p + n) (p + m) = p + Rmin n m.
Proof.
intros. apply min_monotone.
intros x y. apply Rplus_le_compat_l.
Qed.
Lemma plus_min_distr_r : forall n m p, Rmin (n + p) (m + p) = Rmin n m + p.
Proof.
intros. rewrite (Rplus_comm n p), (Rplus_comm m p), (Rplus_comm _ p).
apply plus_min_distr_l.
Qed.
(** Anti-monotonicity swaps the role of [min] and [max] *)
Lemma opp_max_distr : forall n m : R, -(Rmax n m) = Rmin (- n) (- m).
Proof.
intros. symmetry. apply min_max_antimonotone.
do 3 red. intros; apply Rge_le. apply Ropp_le_ge_contravar; auto.
Qed.
Lemma opp_min_distr : forall n m : R, - (Rmin n m) = Rmax (- n) (- m).
Proof.
intros. symmetry. apply max_min_antimonotone.
do 3 red. intros; apply Rge_le. apply Ropp_le_ge_contravar; auto.
Qed.
Lemma minus_max_distr_l : forall n m p, Rmax (p - n) (p - m) = p - Rmin n m.
Proof.
unfold Rminus. intros. rewrite opp_min_distr. apply plus_max_distr_l.
Qed.
Lemma minus_max_distr_r : forall n m p, Rmax (n - p) (m - p) = Rmax n m - p.
Proof.
unfold Rminus. intros. apply plus_max_distr_r.
Qed.
Lemma minus_min_distr_l : forall n m p, Rmin (p - n) (p - m) = p - Rmax n m.
Proof.
unfold Rminus. intros. rewrite opp_max_distr. apply plus_min_distr_l.
Qed.
Lemma minus_min_distr_r : forall n m p, Rmin (n - p) (m - p) = Rmin n m - p.
Proof.
unfold Rminus. intros. apply plus_min_distr_r.
Qed.
End R.
|