summaryrefslogtreecommitdiff
path: root/theories/Reals/Rlogic.v
blob: 0b892a764234e5f540b87c71b58f2314280537f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** * This module proves some logical properties of the axiomatics of Reals

1. Decidablity of arithmetical statements from
   the axiom that the order of the real numbers is decidable.

2. Derivability of the archimedean "axiom"
*)

(** 1- Proof of the decidablity of arithmetical statements from
excluded middle and the axiom that the order of the real numbers is
decidable. *)

(** Assuming a decidable predicate [P n], A series is constructed whose
[n]th term is 1/2^n if [P n] holds and 0 otherwise.  This sum reaches 2
only if [P n] holds for all [n], otherwise the sum is less than 2.
Comparing the sum to 2 decides if [forall n, P n] or [~forall n, P n] *)

(** One can iterate this lemma and use classical logic to decide any
statement in the arithmetical hierarchy. *)

(** Contributed by Cezary Kaliszyk and Russell O'Connor *)

Require Import ConstructiveEpsilon.
Require Import Rfunctions.
Require Import PartSum.
Require Import SeqSeries.
Require Import RiemannInt.
Require Import Fourier.

Section Arithmetical_dec.

Variable P : nat -> Prop.
Hypothesis HP : forall n, {P n} + {~P n}.

Let ge_fun_sums_ge_lemma : (forall (m n : nat) (f : nat -> R), (lt m n) -> (forall i : nat, 0 <= f i) -> sum_f_R0 f m <= sum_f_R0 f n).
Proof.
intros m n f mn fpos.
replace (sum_f_R0 f m) with (sum_f_R0 f m + 0) by ring.
rewrite (tech2 f m n mn).
apply Rplus_le_compat_l.
 induction (n - S m)%nat; simpl in *.
 apply fpos.
replace 0 with (0 + 0) by ring.
apply (Rplus_le_compat _ _ _ _ IHn0 (fpos (S (m + S n0)%nat))).
Qed.

Let ge_fun_sums_ge : (forall (m n : nat) (f : nat -> R), (le m n) -> (forall i : nat, 0 <= f i) -> sum_f_R0 f m <= sum_f_R0 f n).
Proof.
intros m n f mn pos.
 elim (le_lt_or_eq _ _ mn).
 intro; apply ge_fun_sums_ge_lemma; assumption.
intro H; rewrite H; auto with *.
Qed.

Let f:=fun n => (if HP n then (1/2)^n else 0)%R.

Lemma cauchy_crit_geometric_dec_fun : Cauchy_crit_series f.
Proof.
intros e He.
assert (X:(Pser (fun n:nat => 1) (1/2) (/ (1 - (1/2))))%R).
 apply GP_infinite.
 apply Rabs_def1; fourier.
assert (He':e/2 > 0) by fourier.
destruct (X _ He') as [N HN].
clear X.
exists N.
intros n m Hn Hm.
replace e with (e/2 + e/2)%R by field.
set (g:=(fun n0 : nat => 1 * (1 / 2) ^ n0)) in *.
assert (R_dist (sum_f_R0 g n) (sum_f_R0 g m) < e / 2 + e / 2).
 apply Rle_lt_trans with (R_dist (sum_f_R0 g n) 2+R_dist 2 (sum_f_R0 g m))%R.
  apply R_dist_tri.
 replace (/(1 - 1/2)) with 2 in HN by field.
 cut (forall n, (n >= N)%nat -> R_dist (sum_f_R0 g n) 2 < e/2)%R.
  intros Z.
  apply Rplus_lt_compat.
   apply Z; assumption.
  rewrite R_dist_sym.
  apply Z; assumption.
 clear - HN He.
 intros n Hn.
 apply HN.
 auto.
eapply Rle_lt_trans;[|apply H].
clear -ge_fun_sums_ge n.
cut (forall n m, (m <= n)%nat -> R_dist (sum_f_R0 f n) (sum_f_R0 f m) <= R_dist (sum_f_R0 g n) (sum_f_R0 g m)).
 intros H.
 destruct (le_lt_dec m n).
  apply H; assumption.
 rewrite R_dist_sym.
 rewrite (R_dist_sym (sum_f_R0 g n)).
 apply H; auto with *.
clear n m.
intros n m Hnm.
unfold R_dist.
cut (forall i : nat, (1 / 2) ^ i >= 0). intro RPosPow.
rewrite Rabs_pos_eq.
 rewrite Rabs_pos_eq.
  cut (sum_f_R0 g m - sum_f_R0 f m <=  sum_f_R0 g n - sum_f_R0 f n).
   intros; fourier.
   do 2 rewrite <- minus_sum.
   apply (ge_fun_sums_ge m n (fun i : nat => g i - f i) Hnm).
   intro i.
   unfold f, g.
   elim (HP i); intro; ring_simplify; auto with *.
  cut (sum_f_R0 g m <= sum_f_R0 g n).
   intro; fourier.
  apply (ge_fun_sums_ge m n g Hnm).
  intro. unfold g.
  ring_simplify.
  apply Rge_le.
  apply RPosPow.
 cut (sum_f_R0 f m <= sum_f_R0 f n).
  intro; fourier.
 apply (ge_fun_sums_ge m n f Hnm).
 intro; unfold f.
 elim (HP i); intro; simpl.
  apply Rge_le.
  apply RPosPow.
 auto with *.
intro i.
apply Rle_ge.
apply pow_le.
fourier.
Qed.

Lemma forall_dec : {forall n, P n} + {~forall n, P n}.
Proof.
destruct (cv_cauchy_2 _ cauchy_crit_geometric_dec_fun).
 cut (2 <= x <-> forall n : nat, P n).
 intro H.
 elim (Rle_dec 2 x); intro X.
 left; tauto.
 right; tauto.
assert (A:Rabs(1/2) < 1) by (apply Rabs_def1; fourier).
assert (A0:=(GP_infinite (1/2) A)).
symmetry.
 split; intro.
 replace 2 with (/ (1 - (1 / 2))) by field.
 unfold Pser, infinite_sum in A0.
 eapply Rle_cv_lim;[|unfold Un_cv; apply A0 |apply u].
 intros n.
 clear -n H.
  induction n; unfold f;simpl.
  destruct (HP 0); auto with *.
  elim n; auto.
 apply Rplus_le_compat; auto.
 destruct (HP (S n)); auto with *.
 elim n0; auto.
intros n.
destruct (HP n); auto.
elim (RIneq.Rle_not_lt _ _ H).
assert (B:0< (1/2)^n).
 apply pow_lt.
 fourier.
apply Rle_lt_trans with (2-(1/2)^n);[|fourier].
replace (/(1-1/2))%R with 2 in A0 by field.
set (g:= fun m => if (eq_nat_dec m n) then (1/2)^n else 0).
assert (Z:  Un_cv (fun N : nat => sum_f_R0 g N) ((1/2)^n)).
 intros e He.
 exists n.
 intros a Ha.
 replace (sum_f_R0 g a) with ((1/2)^n).
  rewrite (R_dist_eq); assumption.
 symmetry.
 cut (forall a : nat, ((a >= n)%nat -> sum_f_R0 g a = (1 / 2) ^ n) /\ ((a < n)%nat -> sum_f_R0 g a = 0))%R.
  intros H0.
  destruct (H0 a).
  auto.
 clear - g.
 induction a.
  split;
   intros H;
   simpl; unfold g;
   destruct (eq_nat_dec 0 n) as [t|f]; try reflexivity.
   elim f; auto with *.
  exfalso; omega.
 destruct IHa as [IHa0 IHa1].
 split;
  intros H;
  simpl; unfold g at 2;
  destruct (eq_nat_dec (S a) n).
    rewrite IHa1.
     ring.
    omega.
   ring_simplify.
   apply IHa0.
   omega.
  exfalso; omega.
 ring_simplify.
 apply IHa1.
 omega.
assert (C:=CV_minus _ _ _ _ A0 Z).
eapply Rle_cv_lim;[|apply u |apply C].
clear - n0 B.
intros m.
simpl.
induction m.
 simpl.
 unfold f, g.
 destruct (eq_nat_dec 0 n).
  destruct (HP 0).
   elim n0.
   congruence.
  clear -n.
  induction n; simpl; fourier.
 destruct (HP); simpl; fourier.
cut (f (S m) <= 1 * ((1 / 2) ^ (S m)) - g (S m)).
 intros L.
 eapply Rle_trans.
  simpl.
  apply Rplus_le_compat.
   apply IHm.
  apply L.
 simpl; fourier.
unfold f, g.
destruct (eq_nat_dec (S m) n).
 destruct (HP (S m)).
  elim n0.
  congruence.
 rewrite e.
 fourier.
destruct (HP (S m)).
 fourier.
ring_simplify.
apply pow_le.
fourier.
Qed.

Lemma sig_forall_dec :  {n | ~P n}+{forall n, P n}.
Proof.
destruct forall_dec.
 right; assumption.
left.
apply constructive_indefinite_ground_description_nat; auto.
 clear - HP.
 firstorder.
apply Classical_Pred_Type.not_all_ex_not.
assumption.
Qed.

End Arithmetical_dec.

(** 2- Derivability of the Archimedean axiom *)

(* This is a standard proof (it has been taken from PlanetMath). It is
formulated negatively so as to avoid the need for classical
logic. Using a proof of {n | ~P n}+{forall n, P n} (the one above or a
variant of it that does not need classical axioms) , we can in
principle also derive [up] and its [specification] *)

Theorem not_not_archimedean :
  forall r : R, ~ (forall n : nat, (INR n <= r)%R).
Proof.
intros r H.
set (E := fun r => exists n : nat, r = INR n).
assert (exists x : R, E x) by
  (exists 0%R; simpl; red; exists 0%nat; reflexivity).
assert (bound E) by (exists r; intros x (m,H2); rewrite H2; apply H).
destruct (completeness E) as (M,(H3,H4)); try assumption.
set (M' := (M + -1)%R).
assert (H2 : ~ is_upper_bound E M').
  intro H5.
  assert (M <= M')%R by (apply H4; exact H5).
  apply (Rlt_not_le M M').
    unfold M'.
    pattern M at 2.
    rewrite <- Rplus_0_l.
    pattern (0 + M)%R.
    rewrite Rplus_comm.
    rewrite <- (Rplus_opp_r 1).
    apply Rplus_lt_compat_l.
    rewrite Rplus_comm.
    apply Rlt_plus_1.
  assumption.
apply H2.
intros N (n,H7).
rewrite H7.
unfold M'.
assert (H5 : (INR (S n) <= M)%R) by (apply H3; exists (S n); reflexivity).
rewrite S_INR in H5.
assert (H6 : (INR n + 1 + -1 <= M + -1)%R).
  apply Rplus_le_compat_r.
  assumption.
rewrite Rplus_assoc in H6.
rewrite Rplus_opp_r in H6.
rewrite (Rplus_comm (INR n) 0) in H6.
rewrite Rplus_0_l in H6.
assumption.
Qed.