1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Rlimit.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
(*********************************************************)
(** Definition of the limit *)
(* *)
(*********************************************************)
Require Import Rbase.
Require Import Rfunctions.
Require Import Classical_Prop.
Require Import Fourier.
Open Local Scope R_scope.
(*******************************)
(** * Calculus *)
(*******************************)
(*********)
Lemma eps2_Rgt_R0 : forall eps:R, eps > 0 -> eps * / 2 > 0.
Proof.
intros; fourier.
Qed.
(*********)
Lemma eps2 : forall eps:R, eps * / 2 + eps * / 2 = eps.
Proof.
intro esp.
assert (H := double_var esp).
unfold Rdiv in H.
symmetry in |- *; exact H.
Qed.
(*********)
Lemma eps4 : forall eps:R, eps * / (2 + 2) + eps * / (2 + 2) = eps * / 2.
Proof.
intro eps.
replace (2 + 2) with 4.
pattern eps at 3 in |- *; rewrite double_var.
rewrite (Rmult_plus_distr_r (eps / 2) (eps / 2) (/ 2)).
unfold Rdiv in |- *.
repeat rewrite Rmult_assoc.
rewrite <- Rinv_mult_distr.
reflexivity.
discrR.
discrR.
ring.
Qed.
(*********)
Lemma Rlt_eps2_eps : forall eps:R, eps > 0 -> eps * / 2 < eps.
Proof.
intros.
pattern eps at 2 in |- *; rewrite <- Rmult_1_r.
repeat rewrite (Rmult_comm eps).
apply Rmult_lt_compat_r.
exact H.
apply Rmult_lt_reg_l with 2.
fourier.
rewrite Rmult_1_r; rewrite <- Rinv_r_sym.
fourier.
discrR.
Qed.
(*********)
Lemma Rlt_eps4_eps : forall eps:R, eps > 0 -> eps * / (2 + 2) < eps.
Proof.
intros.
replace (2 + 2) with 4.
pattern eps at 2 in |- *; rewrite <- Rmult_1_r.
repeat rewrite (Rmult_comm eps).
apply Rmult_lt_compat_r.
exact H.
apply Rmult_lt_reg_l with 4.
replace 4 with 4.
apply Rmult_lt_0_compat; fourier.
ring.
rewrite Rmult_1_r; rewrite <- Rinv_r_sym.
fourier.
discrR.
ring.
Qed.
(*********)
Lemma prop_eps : forall r:R, (forall eps:R, eps > 0 -> r < eps) -> r <= 0.
Proof.
intros; elim (Rtotal_order r 0); intro.
apply Rlt_le; assumption.
elim H0; intro.
apply Req_le; assumption.
clear H0; generalize (H r H1); intro; generalize (Rlt_irrefl r); intro;
elimtype False; auto.
Qed.
(*********)
Definition mul_factor (l l':R) := / (1 + (Rabs l + Rabs l')).
(*********)
Lemma mul_factor_wd : forall l l':R, 1 + (Rabs l + Rabs l') <> 0.
Proof.
intros; rewrite (Rplus_comm 1 (Rabs l + Rabs l')); apply tech_Rplus.
cut (Rabs (l + l') <= Rabs l + Rabs l').
cut (0 <= Rabs (l + l')).
exact (Rle_trans _ _ _).
exact (Rabs_pos (l + l')).
exact (Rabs_triang _ _).
exact Rlt_0_1.
Qed.
(*********)
Lemma mul_factor_gt : forall eps l l':R, eps > 0 -> eps * mul_factor l l' > 0.
Proof.
intros; unfold Rgt in |- *; rewrite <- (Rmult_0_r eps);
apply Rmult_lt_compat_l.
assumption.
unfold mul_factor in |- *; apply Rinv_0_lt_compat;
cut (1 <= 1 + (Rabs l + Rabs l')).
cut (0 < 1).
exact (Rlt_le_trans _ _ _).
exact Rlt_0_1.
replace (1 <= 1 + (Rabs l + Rabs l')) with (1 + 0 <= 1 + (Rabs l + Rabs l')).
apply Rplus_le_compat_l.
cut (Rabs (l + l') <= Rabs l + Rabs l').
cut (0 <= Rabs (l + l')).
exact (Rle_trans _ _ _).
exact (Rabs_pos _).
exact (Rabs_triang _ _).
rewrite (proj1 (Rplus_ne 1)); trivial.
Qed.
(*********)
Lemma mul_factor_gt_f :
forall eps l l':R, eps > 0 -> Rmin 1 (eps * mul_factor l l') > 0.
intros; apply Rmin_Rgt_r; split.
exact Rlt_0_1.
exact (mul_factor_gt eps l l' H).
Qed.
(*******************************)
(** * Metric space *)
(*******************************)
(*********)
Record Metric_Space : Type :=
{Base : Type;
dist : Base -> Base -> R;
dist_pos : forall x y:Base, dist x y >= 0;
dist_sym : forall x y:Base, dist x y = dist y x;
dist_refl : forall x y:Base, dist x y = 0 <-> x = y;
dist_tri : forall x y z:Base, dist x y <= dist x z + dist z y}.
(*******************************)
(** ** Limit in Metric space *)
(*******************************)
(*********)
Definition limit_in (X X':Metric_Space) (f:Base X -> Base X')
(D:Base X -> Prop) (x0:Base X) (l:Base X') :=
forall eps:R,
eps > 0 ->
exists alp : R,
alp > 0 /\
(forall x:Base X, D x /\ dist X x x0 < alp -> dist X' (f x) l < eps).
(*******************************)
(** ** R is a metric space *)
(*******************************)
(*********)
Definition R_met : Metric_Space :=
Build_Metric_Space R R_dist R_dist_pos R_dist_sym R_dist_refl R_dist_tri.
(*******************************)
(** * Limit 1 arg *)
(*******************************)
(*********)
Definition Dgf (Df Dg:R -> Prop) (f:R -> R) (x:R) := Df x /\ Dg (f x).
(*********)
Definition limit1_in (f:R -> R) (D:R -> Prop) (l x0:R) : Prop :=
limit_in R_met R_met f D x0 l.
(*********)
Lemma tech_limit :
forall (f:R -> R) (D:R -> Prop) (l x0:R),
D x0 -> limit1_in f D l x0 -> l = f x0.
Proof.
intros f D l x0 H H0.
case (Rabs_pos (f x0 - l)); intros H1.
absurd (dist R_met (f x0) l < dist R_met (f x0) l).
apply Rlt_irrefl.
case (H0 (dist R_met (f x0) l)); auto.
intros alpha1 [H2 H3]; apply H3; auto; split; auto.
case (dist_refl R_met x0 x0); intros Hr1 Hr2; rewrite Hr2; auto.
case (dist_refl R_met (f x0) l); intros Hr1 Hr2; apply sym_eq; auto.
Qed.
(*********)
Lemma tech_limit_contr :
forall (f:R -> R) (D:R -> Prop) (l x0:R),
D x0 -> l <> f x0 -> ~ limit1_in f D l x0.
Proof.
intros; generalize (tech_limit f D l x0); tauto.
Qed.
(*********)
Lemma lim_x : forall (D:R -> Prop) (x0:R), limit1_in (fun x:R => x) D x0 x0.
Proof.
unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; intros;
split with eps; split; auto; intros; elim H0; intros;
auto.
Qed.
(*********)
Lemma limit_plus :
forall (f g:R -> R) (D:R -> Prop) (l l' x0:R),
limit1_in f D l x0 ->
limit1_in g D l' x0 -> limit1_in (fun x:R => f x + g x) D (l + l') x0.
Proof.
intros; unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *;
intros; elim (H (eps * / 2) (eps2_Rgt_R0 eps H1));
elim (H0 (eps * / 2) (eps2_Rgt_R0 eps H1)); simpl in |- *;
clear H H0; intros; elim H; elim H0; clear H H0; intros;
split with (Rmin x1 x); split.
exact (Rmin_Rgt_r x1 x 0 (conj H H2)).
intros; elim H4; clear H4; intros;
cut (R_dist (f x2) l + R_dist (g x2) l' < eps).
cut (R_dist (f x2 + g x2) (l + l') <= R_dist (f x2) l + R_dist (g x2) l').
exact (Rle_lt_trans _ _ _).
exact (R_dist_plus _ _ _ _).
elim (Rmin_Rgt_l x1 x (R_dist x2 x0) H5); clear H5; intros.
generalize (H3 x2 (conj H4 H6)); generalize (H0 x2 (conj H4 H5)); intros;
replace eps with (eps * / 2 + eps * / 2).
exact (Rplus_lt_compat _ _ _ _ H7 H8).
exact (eps2 eps).
Qed.
(*********)
Lemma limit_Ropp :
forall (f:R -> R) (D:R -> Prop) (l x0:R),
limit1_in f D l x0 -> limit1_in (fun x:R => - f x) D (- l) x0.
Proof.
unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; intros;
elim (H eps H0); clear H; intros; elim H; clear H;
intros; split with x; split; auto; intros; generalize (H1 x1 H2);
clear H1; intro; unfold R_dist in |- *; unfold Rminus in |- *;
rewrite (Ropp_involutive l); rewrite (Rplus_comm (- f x1) l);
fold (l - f x1) in |- *; fold (R_dist l (f x1)) in |- *;
rewrite R_dist_sym; assumption.
Qed.
(*********)
Lemma limit_minus :
forall (f g:R -> R) (D:R -> Prop) (l l' x0:R),
limit1_in f D l x0 ->
limit1_in g D l' x0 -> limit1_in (fun x:R => f x - g x) D (l - l') x0.
Proof.
intros; unfold Rminus in |- *; generalize (limit_Ropp g D l' x0 H0); intro;
exact (limit_plus f (fun x:R => - g x) D l (- l') x0 H H1).
Qed.
(*********)
Lemma limit_free :
forall (f:R -> R) (D:R -> Prop) (x x0:R),
limit1_in (fun h:R => f x) D (f x) x0.
Proof.
unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; intros;
split with eps; split; auto; intros; elim (R_dist_refl (f x) (f x));
intros a b; rewrite (b (refl_equal (f x))); unfold Rgt in H;
assumption.
Qed.
(*********)
Lemma limit_mul :
forall (f g:R -> R) (D:R -> Prop) (l l' x0:R),
limit1_in f D l x0 ->
limit1_in g D l' x0 -> limit1_in (fun x:R => f x * g x) D (l * l') x0.
Proof.
intros; unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *;
intros;
elim (H (Rmin 1 (eps * mul_factor l l')) (mul_factor_gt_f eps l l' H1));
elim (H0 (eps * mul_factor l l') (mul_factor_gt eps l l' H1));
clear H H0; simpl in |- *; intros; elim H; elim H0;
clear H H0; intros; split with (Rmin x1 x); split.
exact (Rmin_Rgt_r x1 x 0 (conj H H2)).
intros; elim H4; clear H4; intros; unfold R_dist in |- *;
replace (f x2 * g x2 - l * l') with (f x2 * (g x2 - l') + l' * (f x2 - l)).
cut (Rabs (f x2 * (g x2 - l')) + Rabs (l' * (f x2 - l)) < eps).
cut
(Rabs (f x2 * (g x2 - l') + l' * (f x2 - l)) <=
Rabs (f x2 * (g x2 - l')) + Rabs (l' * (f x2 - l))).
exact (Rle_lt_trans _ _ _).
exact (Rabs_triang _ _).
rewrite (Rabs_mult (f x2) (g x2 - l')); rewrite (Rabs_mult l' (f x2 - l));
cut
((1 + Rabs l) * (eps * mul_factor l l') + Rabs l' * (eps * mul_factor l l') <=
eps).
cut
(Rabs (f x2) * Rabs (g x2 - l') + Rabs l' * Rabs (f x2 - l) <
(1 + Rabs l) * (eps * mul_factor l l') + Rabs l' * (eps * mul_factor l l')).
exact (Rlt_le_trans _ _ _).
elim (Rmin_Rgt_l x1 x (R_dist x2 x0) H5); clear H5; intros;
generalize (H0 x2 (conj H4 H5)); intro; generalize (Rmin_Rgt_l _ _ _ H7);
intro; elim H8; intros; clear H0 H8; apply Rplus_lt_le_compat.
apply Rmult_ge_0_gt_0_lt_compat.
apply Rle_ge.
exact (Rabs_pos (g x2 - l')).
rewrite (Rplus_comm 1 (Rabs l)); unfold Rgt in |- *; apply Rle_lt_0_plus_1;
exact (Rabs_pos l).
unfold R_dist in H9;
apply (Rplus_lt_reg_r (- Rabs l) (Rabs (f x2)) (1 + Rabs l)).
rewrite <- (Rplus_assoc (- Rabs l) 1 (Rabs l));
rewrite (Rplus_comm (- Rabs l) 1);
rewrite (Rplus_assoc 1 (- Rabs l) (Rabs l)); rewrite (Rplus_opp_l (Rabs l));
rewrite (proj1 (Rplus_ne 1)); rewrite (Rplus_comm (- Rabs l) (Rabs (f x2)));
generalize H9; cut (Rabs (f x2) - Rabs l <= Rabs (f x2 - l)).
exact (Rle_lt_trans _ _ _).
exact (Rabs_triang_inv _ _).
generalize (H3 x2 (conj H4 H6)); trivial.
apply Rmult_le_compat_l.
exact (Rabs_pos l').
unfold Rle in |- *; left; assumption.
rewrite (Rmult_comm (1 + Rabs l) (eps * mul_factor l l'));
rewrite (Rmult_comm (Rabs l') (eps * mul_factor l l'));
rewrite <-
(Rmult_plus_distr_l (eps * mul_factor l l') (1 + Rabs l) (Rabs l'))
; rewrite (Rmult_assoc eps (mul_factor l l') (1 + Rabs l + Rabs l'));
rewrite (Rplus_assoc 1 (Rabs l) (Rabs l')); unfold mul_factor in |- *;
rewrite (Rinv_l (1 + (Rabs l + Rabs l')) (mul_factor_wd l l'));
rewrite (proj1 (Rmult_ne eps)); apply Req_le; trivial.
ring.
Qed.
(*********)
Definition adhDa (D:R -> Prop) (a:R) : Prop :=
forall alp:R, alp > 0 -> exists x : R, D x /\ R_dist x a < alp.
(*********)
Lemma single_limit :
forall (f:R -> R) (D:R -> Prop) (l l' x0:R),
adhDa D x0 -> limit1_in f D l x0 -> limit1_in f D l' x0 -> l = l'.
Proof.
unfold limit1_in in |- *; unfold limit_in in |- *; intros.
cut (forall eps:R, eps > 0 -> dist R_met l l' < 2 * eps).
clear H0 H1; unfold dist in |- *; unfold R_met in |- *; unfold R_dist in |- *;
unfold Rabs in |- *; case (Rcase_abs (l - l')); intros.
cut (forall eps:R, eps > 0 -> - (l - l') < eps).
intro; generalize (prop_eps (- (l - l')) H1); intro;
generalize (Ropp_gt_lt_0_contravar (l - l') r); intro;
unfold Rgt in H3; generalize (Rgt_not_le (- (l - l')) 0 H3);
intro; elimtype False; auto.
intros; cut (eps * / 2 > 0).
intro; generalize (H0 (eps * / 2) H2); rewrite (Rmult_comm eps (/ 2));
rewrite <- (Rmult_assoc 2 (/ 2) eps); rewrite (Rinv_r 2).
elim (Rmult_ne eps); intros a b; rewrite b; clear a b; trivial.
apply (Rlt_dichotomy_converse 2 0); right; generalize Rlt_0_1; intro;
unfold Rgt in |- *; generalize (Rplus_lt_compat_l 1 0 1 H3);
intro; elim (Rplus_ne 1); intros a b; rewrite a in H4;
clear a b; apply (Rlt_trans 0 1 2 H3 H4).
unfold Rgt in |- *; unfold Rgt in H1; rewrite (Rmult_comm eps (/ 2));
rewrite <- (Rmult_0_r (/ 2)); apply (Rmult_lt_compat_l (/ 2) 0 eps);
auto.
apply (Rinv_0_lt_compat 2); cut (1 < 2).
intro; apply (Rlt_trans 0 1 2 Rlt_0_1 H2).
generalize (Rplus_lt_compat_l 1 0 1 Rlt_0_1); elim (Rplus_ne 1); intros a b;
rewrite a; clear a b; trivial.
(**)
cut (forall eps:R, eps > 0 -> l - l' < eps).
intro; generalize (prop_eps (l - l') H1); intro; elim (Rle_le_eq (l - l') 0);
intros a b; clear b; apply (Rminus_diag_uniq l l');
apply a; split.
assumption.
apply (Rge_le (l - l') 0 r).
intros; cut (eps * / 2 > 0).
intro; generalize (H0 (eps * / 2) H2); rewrite (Rmult_comm eps (/ 2));
rewrite <- (Rmult_assoc 2 (/ 2) eps); rewrite (Rinv_r 2).
elim (Rmult_ne eps); intros a b; rewrite b; clear a b; trivial.
apply (Rlt_dichotomy_converse 2 0); right; generalize Rlt_0_1; intro;
unfold Rgt in |- *; generalize (Rplus_lt_compat_l 1 0 1 H3);
intro; elim (Rplus_ne 1); intros a b; rewrite a in H4;
clear a b; apply (Rlt_trans 0 1 2 H3 H4).
unfold Rgt in |- *; unfold Rgt in H1; rewrite (Rmult_comm eps (/ 2));
rewrite <- (Rmult_0_r (/ 2)); apply (Rmult_lt_compat_l (/ 2) 0 eps);
auto.
apply (Rinv_0_lt_compat 2); cut (1 < 2).
intro; apply (Rlt_trans 0 1 2 Rlt_0_1 H2).
generalize (Rplus_lt_compat_l 1 0 1 Rlt_0_1); elim (Rplus_ne 1); intros a b;
rewrite a; clear a b; trivial.
(**)
intros; unfold adhDa in H; elim (H0 eps H2); intros; elim (H1 eps H2); intros;
clear H0 H1; elim H3; elim H4; clear H3 H4; intros;
simpl in |- *; simpl in H1, H4; generalize (Rmin_Rgt x x1 0);
intro; elim H5; intros; clear H5; elim (H (Rmin x x1) (H7 (conj H3 H0)));
intros; elim H5; intros; clear H5 H H6 H7;
generalize (Rmin_Rgt x x1 (R_dist x2 x0)); intro;
elim H; intros; clear H H6; unfold Rgt in H5; elim (H5 H9);
intros; clear H5 H9; generalize (H1 x2 (conj H8 H6));
generalize (H4 x2 (conj H8 H)); clear H8 H H6 H1 H4 H0 H3;
intros;
generalize
(Rplus_lt_compat (R_dist (f x2) l) eps (R_dist (f x2) l') eps H H0);
unfold R_dist in |- *; intros; rewrite (Rabs_minus_sym (f x2) l) in H1;
rewrite (Rmult_comm 2 eps); rewrite (Rmult_plus_distr_l eps 1 1);
elim (Rmult_ne eps); intros a b; rewrite a; clear a b;
generalize (R_dist_tri l l' (f x2)); unfold R_dist in |- *;
intros;
apply
(Rle_lt_trans (Rabs (l - l')) (Rabs (l - f x2) + Rabs (f x2 - l'))
(eps + eps) H3 H1).
Qed.
(*********)
Lemma limit_comp :
forall (f g:R -> R) (Df Dg:R -> Prop) (l l' x0:R),
limit1_in f Df l x0 ->
limit1_in g Dg l' l -> limit1_in (fun x:R => g (f x)) (Dgf Df Dg f) l' x0.
Proof.
unfold limit1_in, limit_in, Dgf in |- *; simpl in |- *.
intros f g Df Dg l l' x0 Hf Hg eps eps_pos.
elim (Hg eps eps_pos).
intros alpg lg.
elim (Hf alpg).
2: tauto.
intros alpf lf.
exists alpf.
intuition.
Qed.
(*********)
Lemma limit_inv :
forall (f:R -> R) (D:R -> Prop) (l x0:R),
limit1_in f D l x0 -> l <> 0 -> limit1_in (fun x:R => / f x) D (/ l) x0.
Proof.
unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *;
unfold R_dist in |- *; intros; elim (H (Rabs l / 2)).
intros delta1 H2; elim (H (eps * (Rsqr l / 2))).
intros delta2 H3; elim H2; elim H3; intros; exists (Rmin delta1 delta2);
split.
unfold Rmin in |- *; case (Rle_dec delta1 delta2); intro; assumption.
intro; generalize (H5 x); clear H5; intro H5; generalize (H7 x); clear H7;
intro H7; intro H10; elim H10; intros; cut (D x /\ Rabs (x - x0) < delta1).
cut (D x /\ Rabs (x - x0) < delta2).
intros; generalize (H5 H11); clear H5; intro H5; generalize (H7 H12);
clear H7; intro H7; generalize (Rabs_triang_inv l (f x));
intro; rewrite Rabs_minus_sym in H7;
generalize
(Rle_lt_trans (Rabs l - Rabs (f x)) (Rabs (l - f x)) (Rabs l / 2) H13 H7);
intro;
generalize
(Rplus_lt_compat_l (Rabs (f x) - Rabs l / 2) (Rabs l - Rabs (f x))
(Rabs l / 2) H14);
replace (Rabs (f x) - Rabs l / 2 + (Rabs l - Rabs (f x))) with (Rabs l / 2).
unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_l;
rewrite Rplus_0_r; intro; cut (f x <> 0).
intro; replace (/ f x + - / l) with ((l - f x) * / (l * f x)).
rewrite Rabs_mult; rewrite Rabs_Rinv.
cut (/ Rabs (l * f x) < 2 / Rsqr l).
intro; rewrite Rabs_minus_sym in H5; cut (0 <= / Rabs (l * f x)).
intro;
generalize
(Rmult_le_0_lt_compat (Rabs (l - f x)) (eps * (Rsqr l / 2))
(/ Rabs (l * f x)) (2 / Rsqr l) (Rabs_pos (l - f x)) H18 H5 H17);
replace (eps * (Rsqr l / 2) * (2 / Rsqr l)) with eps.
intro; assumption.
unfold Rdiv in |- *; unfold Rsqr in |- *; rewrite Rinv_mult_distr.
repeat rewrite Rmult_assoc.
rewrite (Rmult_comm l).
repeat rewrite Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r.
rewrite (Rmult_comm l).
repeat rewrite Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; reflexivity.
discrR.
exact H0.
exact H0.
exact H0.
exact H0.
left; apply Rinv_0_lt_compat; apply Rabs_pos_lt; apply prod_neq_R0;
assumption.
rewrite Rmult_comm; rewrite Rabs_mult; rewrite Rinv_mult_distr.
rewrite (Rsqr_abs l); unfold Rsqr in |- *; unfold Rdiv in |- *;
rewrite Rinv_mult_distr.
repeat rewrite <- Rmult_assoc; apply Rmult_lt_compat_r.
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
apply Rmult_lt_reg_l with (Rabs (f x) * Rabs l * / 2).
repeat apply Rmult_lt_0_compat.
apply Rabs_pos_lt; assumption.
apply Rabs_pos_lt; assumption.
apply Rinv_0_lt_compat; cut (0%nat <> 2%nat);
[ intro H17; generalize (lt_INR_0 2 (neq_O_lt 2 H17)); unfold INR in |- *;
intro H18; assumption
| discriminate ].
replace (Rabs (f x) * Rabs l * / 2 * / Rabs (f x)) with (Rabs l / 2).
replace (Rabs (f x) * Rabs l * / 2 * (2 * / Rabs l)) with (Rabs (f x)).
assumption.
repeat rewrite Rmult_assoc.
rewrite (Rmult_comm (Rabs l)).
repeat rewrite Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; reflexivity.
discrR.
apply Rabs_no_R0.
assumption.
unfold Rdiv in |- *.
repeat rewrite Rmult_assoc.
rewrite (Rmult_comm (Rabs (f x))).
repeat rewrite Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r.
reflexivity.
apply Rabs_no_R0; assumption.
apply Rabs_no_R0; assumption.
apply Rabs_no_R0; assumption.
apply Rabs_no_R0; assumption.
apply Rabs_no_R0; assumption.
apply prod_neq_R0; assumption.
rewrite (Rinv_mult_distr _ _ H0 H16).
unfold Rminus in |- *; rewrite Rmult_plus_distr_r.
rewrite <- Rmult_assoc.
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l.
rewrite Ropp_mult_distr_l_reverse.
rewrite (Rmult_comm (f x)).
rewrite Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r.
reflexivity.
assumption.
assumption.
red in |- *; intro; rewrite H16 in H15; rewrite Rabs_R0 in H15;
cut (0 < Rabs l / 2).
intro; elim (Rlt_irrefl 0 (Rlt_trans 0 (Rabs l / 2) 0 H17 H15)).
unfold Rdiv in |- *; apply Rmult_lt_0_compat.
apply Rabs_pos_lt; assumption.
apply Rinv_0_lt_compat; cut (0%nat <> 2%nat);
[ intro H17; generalize (lt_INR_0 2 (neq_O_lt 2 H17)); unfold INR in |- *;
intro; assumption
| discriminate ].
pattern (Rabs l) at 3 in |- *; rewrite double_var.
ring.
split;
[ assumption
| apply Rlt_le_trans with (Rmin delta1 delta2);
[ assumption | apply Rmin_r ] ].
split;
[ assumption
| apply Rlt_le_trans with (Rmin delta1 delta2);
[ assumption | apply Rmin_l ] ].
change (0 < eps * (Rsqr l / 2)) in |- *; unfold Rdiv in |- *;
repeat rewrite Rmult_assoc; apply Rmult_lt_0_compat.
assumption.
apply Rmult_lt_0_compat. apply Rsqr_pos_lt; assumption.
apply Rinv_0_lt_compat; cut (0%nat <> 2%nat);
[ intro H3; generalize (lt_INR_0 2 (neq_O_lt 2 H3)); unfold INR in |- *;
intro; assumption
| discriminate ].
change (0 < Rabs l / 2) in |- *; unfold Rdiv in |- *; apply Rmult_lt_0_compat;
[ apply Rabs_pos_lt; assumption
| apply Rinv_0_lt_compat; cut (0%nat <> 2%nat);
[ intro H3; generalize (lt_INR_0 2 (neq_O_lt 2 H3)); unfold INR in |- *;
intro; assumption
| discriminate ] ].
Qed.
|