1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*********************************************************)
(** Complements for the real numbers *)
(* *)
(*********************************************************)
Require Import Rbase.
Require Import R_Ifp.
Require Import Fourier.
Local Open Scope R_scope.
Implicit Type r : R.
(*******************************)
(** * Rmin *)
(*******************************)
(*********)
Definition Rmin (x y:R) : R :=
match Rle_dec x y with
| left _ => x
| right _ => y
end.
(*********)
Lemma Rmin_case : forall r1 r2 (P:R -> Type), P r1 -> P r2 -> P (Rmin r1 r2).
Proof.
intros r1 r2 P H1 H2; unfold Rmin; case (Rle_dec r1 r2); auto.
Qed.
(*********)
Lemma Rmin_case_strong : forall r1 r2 (P:R -> Type),
(r1 <= r2 -> P r1) -> (r2 <= r1 -> P r2) -> P (Rmin r1 r2).
Proof.
intros r1 r2 P H1 H2; unfold Rmin; destruct (Rle_dec r1 r2); auto with real.
Qed.
(*********)
Lemma Rmin_Rgt_l : forall r1 r2 r, Rmin r1 r2 > r -> r1 > r /\ r2 > r.
Proof.
intros r1 r2 r; unfold Rmin in |- *; case (Rle_dec r1 r2); intros.
split.
assumption.
unfold Rgt in |- *; unfold Rgt in H; exact (Rlt_le_trans r r1 r2 H r0).
split.
generalize (Rnot_le_lt r1 r2 n); intro; exact (Rgt_trans r1 r2 r H0 H).
assumption.
Qed.
(*********)
Lemma Rmin_Rgt_r : forall r1 r2 r, r1 > r /\ r2 > r -> Rmin r1 r2 > r.
Proof.
intros; unfold Rmin in |- *; case (Rle_dec r1 r2); elim H; clear H; intros;
assumption.
Qed.
(*********)
Lemma Rmin_Rgt : forall r1 r2 r, Rmin r1 r2 > r <-> r1 > r /\ r2 > r.
Proof.
intros; split.
exact (Rmin_Rgt_l r1 r2 r).
exact (Rmin_Rgt_r r1 r2 r).
Qed.
(*********)
Lemma Rmin_l : forall x y:R, Rmin x y <= x.
Proof.
intros; unfold Rmin in |- *; case (Rle_dec x y); intro H1;
[ right; reflexivity | auto with real ].
Qed.
(*********)
Lemma Rmin_r : forall x y:R, Rmin x y <= y.
Proof.
intros; unfold Rmin in |- *; case (Rle_dec x y); intro H1;
[ assumption | auto with real ].
Qed.
(*********)
Lemma Rmin_left : forall x y, x <= y -> Rmin x y = x.
Proof.
intros; apply Rmin_case_strong; auto using Rle_antisym.
Qed.
(*********)
Lemma Rmin_right : forall x y, y <= x -> Rmin x y = y.
Proof.
intros; apply Rmin_case_strong; auto using Rle_antisym.
Qed.
(*********)
Lemma Rle_min_compat_r : forall x y z, x <= y -> Rmin x z <= Rmin y z.
Proof.
intros; do 2 (apply Rmin_case_strong; intro); eauto using Rle_trans, Rle_refl.
Qed.
(*********)
Lemma Rle_min_compat_l : forall x y z, x <= y -> Rmin z x <= Rmin z y.
Proof.
intros; do 2 (apply Rmin_case_strong; intro); eauto using Rle_trans, Rle_refl.
Qed.
(*********)
Lemma Rmin_comm : forall x y:R, Rmin x y = Rmin y x.
Proof.
intros; unfold Rmin; case (Rle_dec x y); case (Rle_dec y x); intros;
try reflexivity || (apply Rle_antisym; assumption || auto with real).
Qed.
(*********)
Lemma Rmin_stable_in_posreal : forall x y:posreal, 0 < Rmin x y.
Proof.
intros; apply Rmin_Rgt_r; split; [ apply (cond_pos x) | apply (cond_pos y) ].
Qed.
(*********)
Lemma Rmin_pos : forall x y:R, 0 < x -> 0 < y -> 0 < Rmin x y.
Proof.
intros; unfold Rmin in |- *.
case (Rle_dec x y); intro; assumption.
Qed.
(*********)
Lemma Rmin_glb : forall x y z:R, z <= x -> z <= y -> z <= Rmin x y.
Proof.
intros; unfold Rmin in |- *; case (Rle_dec x y); intro; assumption.
Qed.
(*********)
Lemma Rmin_glb_lt : forall x y z:R, z < x -> z < y -> z < Rmin x y.
Proof.
intros; unfold Rmin in |- *; case (Rle_dec x y); intro; assumption.
Qed.
(*******************************)
(** * Rmax *)
(*******************************)
(*********)
Definition Rmax (x y:R) : R :=
match Rle_dec x y with
| left _ => y
| right _ => x
end.
(*********)
Lemma Rmax_case : forall r1 r2 (P:R -> Type), P r1 -> P r2 -> P (Rmax r1 r2).
Proof.
intros r1 r2 P H1 H2; unfold Rmax; case (Rle_dec r1 r2); auto.
Qed.
(*********)
Lemma Rmax_case_strong : forall r1 r2 (P:R -> Type),
(r2 <= r1 -> P r1) -> (r1 <= r2 -> P r2) -> P (Rmax r1 r2).
Proof.
intros r1 r2 P H1 H2; unfold Rmax; case (Rle_dec r1 r2); auto with real.
Qed.
(*********)
Lemma Rmax_Rle : forall r1 r2 r, r <= Rmax r1 r2 <-> r <= r1 \/ r <= r2.
Proof.
intros; split.
unfold Rmax in |- *; case (Rle_dec r1 r2); intros; auto.
intro; unfold Rmax in |- *; case (Rle_dec r1 r2); elim H; clear H; intros;
auto.
apply (Rle_trans r r1 r2); auto.
generalize (Rnot_le_lt r1 r2 n); clear n; intro; unfold Rgt in H0;
apply (Rlt_le r r1 (Rle_lt_trans r r2 r1 H H0)).
Qed.
Lemma Rmax_comm : forall x y:R, Rmax x y = Rmax y x.
Proof.
intros p q; unfold Rmax in |- *; case (Rle_dec p q); case (Rle_dec q p); auto;
intros H1 H2; apply Rle_antisym; auto with real.
Qed.
(* begin hide *)
Notation RmaxSym := Rmax_comm (only parsing).
(* end hide *)
(*********)
Lemma Rmax_l : forall x y:R, x <= Rmax x y.
Proof.
intros; unfold Rmax in |- *; case (Rle_dec x y); intro H1;
[ assumption | auto with real ].
Qed.
(*********)
Lemma Rmax_r : forall x y:R, y <= Rmax x y.
Proof.
intros; unfold Rmax in |- *; case (Rle_dec x y); intro H1;
[ right; reflexivity | auto with real ].
Qed.
(* begin hide *)
Notation RmaxLess1 := Rmax_l (only parsing).
Notation RmaxLess2 := Rmax_r (only parsing).
(* end hide *)
(*********)
Lemma Rmax_left : forall x y, y <= x -> Rmax x y = x.
Proof.
intros; apply Rmax_case_strong; auto using Rle_antisym.
Qed.
(*********)
Lemma Rmax_right : forall x y, x <= y -> Rmax x y = y.
Proof.
intros; apply Rmax_case_strong; auto using Rle_antisym.
Qed.
(*********)
Lemma Rle_max_compat_r : forall x y z, x <= y -> Rmax x z <= Rmax y z.
Proof.
intros; do 2 (apply Rmax_case_strong; intro); eauto using Rle_trans, Rle_refl.
Qed.
(*********)
Lemma Rle_max_compat_l : forall x y z, x <= y -> Rmax z x <= Rmax z y.
Proof.
intros; do 2 (apply Rmax_case_strong; intro); eauto using Rle_trans, Rle_refl.
Qed.
(*********)
Lemma RmaxRmult :
forall (p q:R) r, 0 <= r -> Rmax (r * p) (r * q) = r * Rmax p q.
Proof.
intros p q r H; unfold Rmax in |- *.
case (Rle_dec p q); case (Rle_dec (r * p) (r * q)); auto; intros H1 H2; auto.
case H; intros E1.
case H1; auto with real.
rewrite <- E1; repeat rewrite Rmult_0_l; auto.
case H; intros E1.
case H2; auto with real.
apply Rmult_le_reg_l with (r := r); auto.
rewrite <- E1; repeat rewrite Rmult_0_l; auto.
Qed.
(*********)
Lemma Rmax_stable_in_negreal : forall x y:negreal, Rmax x y < 0.
Proof.
intros; unfold Rmax in |- *; case (Rle_dec x y); intro;
[ apply (cond_neg y) | apply (cond_neg x) ].
Qed.
(*********)
Lemma Rmax_lub : forall x y z:R, x <= z -> y <= z -> Rmax x y <= z.
Proof.
intros; unfold Rmax; case (Rle_dec x y); intro; assumption.
Qed.
(*********)
Lemma Rmax_lub_lt : forall x y z:R, x < z -> y < z -> Rmax x y < z.
Proof.
intros; unfold Rmax; case (Rle_dec x y); intro; assumption.
Qed.
(*********)
Lemma Rmax_neg : forall x y:R, x < 0 -> y < 0 -> Rmax x y < 0.
Proof.
intros; unfold Rmax in |- *.
case (Rle_dec x y); intro; assumption.
Qed.
(*******************************)
(** * Rabsolu *)
(*******************************)
(*********)
Lemma Rcase_abs : forall r, {r < 0} + {r >= 0}.
Proof.
intro; generalize (Rle_dec 0 r); intro X; elim X; intro; clear X.
right; apply (Rle_ge 0 r a).
left; fold (0 > r) in |- *; apply (Rnot_le_lt 0 r b).
Qed.
(*********)
Definition Rabs r : R :=
match Rcase_abs r with
| left _ => - r
| right _ => r
end.
(*********)
Lemma Rabs_R0 : Rabs 0 = 0.
Proof.
unfold Rabs in |- *; case (Rcase_abs 0); auto; intro.
generalize (Rlt_irrefl 0); intro; exfalso; auto.
Qed.
Lemma Rabs_R1 : Rabs 1 = 1.
Proof.
unfold Rabs in |- *; case (Rcase_abs 1); auto with real.
intros H; absurd (1 < 0); auto with real.
Qed.
(*********)
Lemma Rabs_no_R0 : forall r, r <> 0 -> Rabs r <> 0.
Proof.
intros; unfold Rabs in |- *; case (Rcase_abs r); intro; auto.
apply Ropp_neq_0_compat; auto.
Qed.
(*********)
Lemma Rabs_left : forall r, r < 0 -> Rabs r = - r.
Proof.
intros; unfold Rabs in |- *; case (Rcase_abs r); trivial; intro;
absurd (r >= 0).
exact (Rlt_not_ge r 0 H).
assumption.
Qed.
(*********)
Lemma Rabs_right : forall r, r >= 0 -> Rabs r = r.
Proof.
intros; unfold Rabs in |- *; case (Rcase_abs r); intro.
absurd (r >= 0).
exact (Rlt_not_ge r 0 r0).
assumption.
trivial.
Qed.
Lemma Rabs_left1 : forall a:R, a <= 0 -> Rabs a = - a.
Proof.
intros a H; case H; intros H1.
apply Rabs_left; auto.
rewrite H1; simpl in |- *; rewrite Rabs_right; auto with real.
Qed.
(*********)
Lemma Rabs_pos : forall x:R, 0 <= Rabs x.
Proof.
intros; unfold Rabs in |- *; case (Rcase_abs x); intro.
generalize (Ropp_lt_gt_contravar x 0 r); intro; unfold Rgt in H;
rewrite Ropp_0 in H; unfold Rle in |- *; left; assumption.
apply Rge_le; assumption.
Qed.
Lemma Rle_abs : forall x:R, x <= Rabs x.
Proof.
intro; unfold Rabs in |- *; case (Rcase_abs x); intros; fourier.
Qed.
Definition RRle_abs := Rle_abs.
(*********)
Lemma Rabs_pos_eq : forall x:R, 0 <= x -> Rabs x = x.
Proof.
intros; unfold Rabs in |- *; case (Rcase_abs x); intro;
[ generalize (Rgt_not_le 0 x r); intro; exfalso; auto | trivial ].
Qed.
(*********)
Lemma Rabs_Rabsolu : forall x:R, Rabs (Rabs x) = Rabs x.
Proof.
intro; apply (Rabs_pos_eq (Rabs x) (Rabs_pos x)).
Qed.
(*********)
Lemma Rabs_pos_lt : forall x:R, x <> 0 -> 0 < Rabs x.
Proof.
intros; generalize (Rabs_pos x); intro; unfold Rle in H0; elim H0; intro;
auto.
exfalso; clear H0; elim H; clear H; generalize H1; unfold Rabs in |- *;
case (Rcase_abs x); intros; auto.
clear r H1; generalize (Rplus_eq_compat_l x 0 (- x) H0);
rewrite (let (H1, H2) := Rplus_ne x in H1); rewrite (Rplus_opp_r x);
trivial.
Qed.
(*********)
Lemma Rabs_minus_sym : forall x y:R, Rabs (x - y) = Rabs (y - x).
Proof.
intros; unfold Rabs in |- *; case (Rcase_abs (x - y));
case (Rcase_abs (y - x)); intros.
generalize (Rminus_lt y x r); generalize (Rminus_lt x y r0); intros;
generalize (Rlt_asym x y H); intro; exfalso;
auto.
rewrite (Ropp_minus_distr x y); trivial.
rewrite (Ropp_minus_distr y x); trivial.
unfold Rge in r, r0; elim r; elim r0; intros; clear r r0.
generalize (Ropp_lt_gt_0_contravar (x - y) H); rewrite (Ropp_minus_distr x y);
intro; unfold Rgt in H0; generalize (Rlt_asym 0 (y - x) H0);
intro; exfalso; auto.
rewrite (Rminus_diag_uniq x y H); trivial.
rewrite (Rminus_diag_uniq y x H0); trivial.
rewrite (Rminus_diag_uniq y x H0); trivial.
Qed.
(*********)
Lemma Rabs_mult : forall x y:R, Rabs (x * y) = Rabs x * Rabs y.
Proof.
intros; unfold Rabs in |- *; case (Rcase_abs (x * y)); case (Rcase_abs x);
case (Rcase_abs y); intros; auto.
generalize (Rmult_lt_gt_compat_neg_l y x 0 r r0); intro;
rewrite (Rmult_0_r y) in H; generalize (Rlt_asym (x * y) 0 r1);
intro; unfold Rgt in H; exfalso; rewrite (Rmult_comm y x) in H;
auto.
rewrite (Ropp_mult_distr_l_reverse x y); trivial.
rewrite (Rmult_comm x (- y)); rewrite (Ropp_mult_distr_l_reverse y x);
rewrite (Rmult_comm x y); trivial.
unfold Rge in r, r0; elim r; elim r0; clear r r0; intros; unfold Rgt in H, H0.
generalize (Rmult_lt_compat_l x 0 y H H0); intro; rewrite (Rmult_0_r x) in H1;
generalize (Rlt_asym (x * y) 0 r1); intro; exfalso;
auto.
rewrite H in r1; rewrite (Rmult_0_l y) in r1; generalize (Rlt_irrefl 0);
intro; exfalso; auto.
rewrite H0 in r1; rewrite (Rmult_0_r x) in r1; generalize (Rlt_irrefl 0);
intro; exfalso; auto.
rewrite H0 in r1; rewrite (Rmult_0_r x) in r1; generalize (Rlt_irrefl 0);
intro; exfalso; auto.
rewrite (Rmult_opp_opp x y); trivial.
unfold Rge in r, r1; elim r; elim r1; clear r r1; intros; unfold Rgt in H0, H.
generalize (Rmult_lt_compat_l y x 0 H0 r0); intro;
rewrite (Rmult_0_r y) in H1; rewrite (Rmult_comm y x) in H1;
generalize (Rlt_asym (x * y) 0 H1); intro; exfalso;
auto.
generalize (Rlt_dichotomy_converse x 0 (or_introl (x > 0) r0));
generalize (Rlt_dichotomy_converse y 0 (or_intror (y < 0) H0));
intros; generalize (Rmult_integral x y H); intro;
elim H3; intro; exfalso; auto.
rewrite H0 in H; rewrite (Rmult_0_r x) in H; unfold Rgt in H;
generalize (Rlt_irrefl 0); intro; exfalso;
auto.
rewrite H0; rewrite (Rmult_0_r x); rewrite (Rmult_0_r (- x)); trivial.
unfold Rge in r0, r1; elim r0; elim r1; clear r0 r1; intros;
unfold Rgt in H0, H.
generalize (Rmult_lt_compat_l x y 0 H0 r); intro; rewrite (Rmult_0_r x) in H1;
generalize (Rlt_asym (x * y) 0 H1); intro; exfalso;
auto.
generalize (Rlt_dichotomy_converse y 0 (or_introl (y > 0) r));
generalize (Rlt_dichotomy_converse 0 x (or_introl (0 > x) H0));
intros; generalize (Rmult_integral x y H); intro;
elim H3; intro; exfalso; auto.
rewrite H0 in H; rewrite (Rmult_0_l y) in H; unfold Rgt in H;
generalize (Rlt_irrefl 0); intro; exfalso;
auto.
rewrite H0; rewrite (Rmult_0_l y); rewrite (Rmult_0_l (- y)); trivial.
Qed.
(*********)
Lemma Rabs_Rinv : forall r, r <> 0 -> Rabs (/ r) = / Rabs r.
Proof.
intro; unfold Rabs in |- *; case (Rcase_abs r); case (Rcase_abs (/ r)); auto;
intros.
apply Ropp_inv_permute; auto.
generalize (Rinv_lt_0_compat r r1); intro; unfold Rge in r0; elim r0; intros.
unfold Rgt in H1; generalize (Rlt_asym 0 (/ r) H1); intro; exfalso;
auto.
generalize (Rlt_dichotomy_converse (/ r) 0 (or_introl (/ r > 0) H0)); intro;
exfalso; auto.
unfold Rge in r1; elim r1; clear r1; intro.
unfold Rgt in H0; generalize (Rlt_asym 0 (/ r) (Rinv_0_lt_compat r H0));
intro; exfalso; auto.
exfalso; auto.
Qed.
Lemma Rabs_Ropp : forall x:R, Rabs (- x) = Rabs x.
Proof.
intro; cut (- x = -1 * x).
intros; rewrite H.
rewrite Rabs_mult.
cut (Rabs (-1) = 1).
intros; rewrite H0.
ring.
unfold Rabs in |- *; case (Rcase_abs (-1)).
intro; ring.
intro H0; generalize (Rge_le (-1) 0 H0); intros.
generalize (Ropp_le_ge_contravar 0 (-1) H1).
rewrite Ropp_involutive; rewrite Ropp_0.
intro; generalize (Rgt_not_le 1 0 Rlt_0_1); intro; generalize (Rge_le 0 1 H2);
intro; exfalso; auto.
ring.
Qed.
(*********)
Lemma Rabs_triang : forall a b:R, Rabs (a + b) <= Rabs a + Rabs b.
Proof.
intros a b; unfold Rabs in |- *; case (Rcase_abs (a + b)); case (Rcase_abs a);
case (Rcase_abs b); intros.
apply (Req_le (- (a + b)) (- a + - b)); rewrite (Ropp_plus_distr a b);
reflexivity.
(**)
rewrite (Ropp_plus_distr a b); apply (Rplus_le_compat_l (- a) (- b) b);
unfold Rle in |- *; unfold Rge in r; elim r; intro.
left; unfold Rgt in H; generalize (Rplus_lt_compat_l (- b) 0 b H); intro;
elim (Rplus_ne (- b)); intros v w; rewrite v in H0;
clear v w; rewrite (Rplus_opp_l b) in H0; apply (Rlt_trans (- b) 0 b H0 H).
right; rewrite H; apply Ropp_0.
(**)
rewrite (Ropp_plus_distr a b); rewrite (Rplus_comm (- a) (- b));
rewrite (Rplus_comm a (- b)); apply (Rplus_le_compat_l (- b) (- a) a);
unfold Rle in |- *; unfold Rge in r0; elim r0; intro.
left; unfold Rgt in H; generalize (Rplus_lt_compat_l (- a) 0 a H); intro;
elim (Rplus_ne (- a)); intros v w; rewrite v in H0;
clear v w; rewrite (Rplus_opp_l a) in H0; apply (Rlt_trans (- a) 0 a H0 H).
right; rewrite H; apply Ropp_0.
(**)
exfalso; generalize (Rplus_ge_compat_l a b 0 r); intro;
elim (Rplus_ne a); intros v w; rewrite v in H; clear v w;
generalize (Rge_trans (a + b) a 0 H r0); intro; clear H;
unfold Rge in H0; elim H0; intro; clear H0.
unfold Rgt in H; generalize (Rlt_asym (a + b) 0 r1); intro; auto.
absurd (a + b = 0); auto.
apply (Rlt_dichotomy_converse (a + b) 0); left; assumption.
(**)
exfalso; generalize (Rplus_lt_compat_l a b 0 r); intro;
elim (Rplus_ne a); intros v w; rewrite v in H; clear v w;
generalize (Rlt_trans (a + b) a 0 H r0); intro; clear H;
unfold Rge in r1; elim r1; clear r1; intro.
unfold Rgt in H; generalize (Rlt_trans (a + b) 0 (a + b) H0 H); intro;
apply (Rlt_irrefl (a + b)); assumption.
rewrite H in H0; apply (Rlt_irrefl 0); assumption.
(**)
rewrite (Rplus_comm a b); rewrite (Rplus_comm (- a) b);
apply (Rplus_le_compat_l b a (- a)); apply (Rminus_le a (- a));
unfold Rminus in |- *; rewrite (Ropp_involutive a);
generalize (Rplus_lt_compat_l a a 0 r0); clear r r1;
intro; elim (Rplus_ne a); intros v w; rewrite v in H;
clear v w; generalize (Rlt_trans (a + a) a 0 H r0);
intro; apply (Rlt_le (a + a) 0 H0).
(**)
apply (Rplus_le_compat_l a b (- b)); apply (Rminus_le b (- b));
unfold Rminus in |- *; rewrite (Ropp_involutive b);
generalize (Rplus_lt_compat_l b b 0 r); clear r0 r1;
intro; elim (Rplus_ne b); intros v w; rewrite v in H;
clear v w; generalize (Rlt_trans (b + b) b 0 H r);
intro; apply (Rlt_le (b + b) 0 H0).
(**)
unfold Rle in |- *; right; reflexivity.
Qed.
(*********)
Lemma Rabs_triang_inv : forall a b:R, Rabs a - Rabs b <= Rabs (a - b).
Proof.
intros; apply (Rplus_le_reg_l (Rabs b) (Rabs a - Rabs b) (Rabs (a - b)));
unfold Rminus in |- *; rewrite <- (Rplus_assoc (Rabs b) (Rabs a) (- Rabs b));
rewrite (Rplus_comm (Rabs b) (Rabs a));
rewrite (Rplus_assoc (Rabs a) (Rabs b) (- Rabs b));
rewrite (Rplus_opp_r (Rabs b)); rewrite (proj1 (Rplus_ne (Rabs a)));
replace (Rabs a) with (Rabs (a + 0)).
rewrite <- (Rplus_opp_r b); rewrite <- (Rplus_assoc a b (- b));
rewrite (Rplus_comm a b); rewrite (Rplus_assoc b a (- b)).
exact (Rabs_triang b (a + - b)).
rewrite (proj1 (Rplus_ne a)); trivial.
Qed.
(* ||a|-|b||<=|a-b| *)
Lemma Rabs_triang_inv2 : forall a b:R, Rabs (Rabs a - Rabs b) <= Rabs (a - b).
Proof.
cut
(forall a b:R, Rabs b <= Rabs a -> Rabs (Rabs a - Rabs b) <= Rabs (a - b)).
intros; destruct (Rtotal_order (Rabs a) (Rabs b)) as [Hlt| [Heq| Hgt]].
rewrite <- (Rabs_Ropp (Rabs a - Rabs b)); rewrite <- (Rabs_Ropp (a - b));
do 2 rewrite Ropp_minus_distr.
apply H; left; assumption.
rewrite Heq; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply Rabs_pos.
apply H; left; assumption.
intros; replace (Rabs (Rabs a - Rabs b)) with (Rabs a - Rabs b).
apply Rabs_triang_inv.
rewrite (Rabs_right (Rabs a - Rabs b));
[ reflexivity
| apply Rle_ge; apply Rplus_le_reg_l with (Rabs b); rewrite Rplus_0_r;
replace (Rabs b + (Rabs a - Rabs b)) with (Rabs a);
[ assumption | ring ] ].
Qed.
(*********)
Lemma Rabs_def1 : forall x a:R, x < a -> - a < x -> Rabs x < a.
Proof.
unfold Rabs in |- *; intros; case (Rcase_abs x); intro.
generalize (Ropp_lt_gt_contravar (- a) x H0); unfold Rgt in |- *;
rewrite Ropp_involutive; intro; assumption.
assumption.
Qed.
(*********)
Lemma Rabs_def2 : forall x a:R, Rabs x < a -> x < a /\ - a < x.
Proof.
unfold Rabs in |- *; intro x; case (Rcase_abs x); intros.
generalize (Ropp_gt_lt_0_contravar x r); unfold Rgt in |- *; intro;
generalize (Rlt_trans 0 (- x) a H0 H); intro; split.
apply (Rlt_trans x 0 a r H1).
generalize (Ropp_lt_gt_contravar (- x) a H); rewrite (Ropp_involutive x);
unfold Rgt in |- *; trivial.
fold (a > x) in H; generalize (Rgt_ge_trans a x 0 H r); intro;
generalize (Ropp_lt_gt_0_contravar a H0); intro; fold (0 > - a) in |- *;
generalize (Rge_gt_trans x 0 (- a) r H1); unfold Rgt in |- *;
intro; split; assumption.
Qed.
Lemma RmaxAbs :
forall (p q:R) r, p <= q -> q <= r -> Rabs q <= Rmax (Rabs p) (Rabs r).
Proof.
intros p q r H' H'0; case (Rle_or_lt 0 p); intros H'1.
repeat rewrite Rabs_right; auto with real.
apply Rle_trans with r; auto with real.
apply RmaxLess2; auto.
apply Rge_trans with p; auto with real; apply Rge_trans with q;
auto with real.
apply Rge_trans with p; auto with real.
rewrite (Rabs_left p); auto.
case (Rle_or_lt 0 q); intros H'2.
repeat rewrite Rabs_right; auto with real.
apply Rle_trans with r; auto.
apply RmaxLess2; auto.
apply Rge_trans with q; auto with real.
rewrite (Rabs_left q); auto.
case (Rle_or_lt 0 r); intros H'3.
repeat rewrite Rabs_right; auto with real.
apply Rle_trans with (- p); auto with real.
apply RmaxLess1; auto.
rewrite (Rabs_left r); auto.
apply Rle_trans with (- p); auto with real.
apply RmaxLess1; auto.
Qed.
Lemma Rabs_Zabs : forall z:Z, Rabs (IZR z) = IZR (Zabs z).
Proof.
intros z; case z; simpl in |- *; auto with real.
apply Rabs_right; auto with real.
intros p0; apply Rabs_right; auto with real zarith.
intros p0; rewrite Rabs_Ropp.
apply Rabs_right; auto with real zarith.
Qed.
Lemma abs_IZR : forall z, IZR (Zabs z) = Rabs (IZR z).
Proof.
intros.
now rewrite Rabs_Zabs.
Qed.
|