1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Rbasic_fun.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
(*********************************************************)
(** Complements for the real numbers *)
(* *)
(*********************************************************)
Require Import Rbase.
Require Import R_Ifp.
Require Import Fourier.
Open Local Scope R_scope.
Implicit Type r : R.
(*******************************)
(** * Rmin *)
(*******************************)
(*********)
Definition Rmin (x y:R) : R :=
match Rle_dec x y with
| left _ => x
| right _ => y
end.
(*********)
Lemma Rmin_Rgt_l : forall r1 r2 r, Rmin r1 r2 > r -> r1 > r /\ r2 > r.
Proof.
intros r1 r2 r; unfold Rmin in |- *; case (Rle_dec r1 r2); intros.
split.
assumption.
unfold Rgt in |- *; unfold Rgt in H; exact (Rlt_le_trans r r1 r2 H r0).
split.
generalize (Rnot_le_lt r1 r2 n); intro; exact (Rgt_trans r1 r2 r H0 H).
assumption.
Qed.
(*********)
Lemma Rmin_Rgt_r : forall r1 r2 r, r1 > r /\ r2 > r -> Rmin r1 r2 > r.
Proof.
intros; unfold Rmin in |- *; case (Rle_dec r1 r2); elim H; clear H; intros;
assumption.
Qed.
(*********)
Lemma Rmin_Rgt : forall r1 r2 r, Rmin r1 r2 > r <-> r1 > r /\ r2 > r.
Proof.
intros; split.
exact (Rmin_Rgt_l r1 r2 r).
exact (Rmin_Rgt_r r1 r2 r).
Qed.
(*********)
Lemma Rmin_l : forall x y:R, Rmin x y <= x.
Proof.
intros; unfold Rmin in |- *; case (Rle_dec x y); intro H1;
[ right; reflexivity | auto with real ].
Qed.
(*********)
Lemma Rmin_r : forall x y:R, Rmin x y <= y.
Proof.
intros; unfold Rmin in |- *; case (Rle_dec x y); intro H1;
[ assumption | auto with real ].
Qed.
(*********)
Lemma Rmin_comm : forall a b:R, Rmin a b = Rmin b a.
Proof.
intros; unfold Rmin in |- *; case (Rle_dec a b); case (Rle_dec b a); intros;
try reflexivity || (apply Rle_antisym; assumption || auto with real).
Qed.
(*********)
Lemma Rmin_stable_in_posreal : forall x y:posreal, 0 < Rmin x y.
Proof.
intros; apply Rmin_Rgt_r; split; [ apply (cond_pos x) | apply (cond_pos y) ].
Qed.
(*******************************)
(** * Rmax *)
(*******************************)
(*********)
Definition Rmax (x y:R) : R :=
match Rle_dec x y with
| left _ => y
| right _ => x
end.
(*********)
Lemma Rmax_Rle : forall r1 r2 r, r <= Rmax r1 r2 <-> r <= r1 \/ r <= r2.
Proof.
intros; split.
unfold Rmax in |- *; case (Rle_dec r1 r2); intros; auto.
intro; unfold Rmax in |- *; case (Rle_dec r1 r2); elim H; clear H; intros;
auto.
apply (Rle_trans r r1 r2); auto.
generalize (Rnot_le_lt r1 r2 n); clear n; intro; unfold Rgt in H0;
apply (Rlt_le r r1 (Rle_lt_trans r r2 r1 H H0)).
Qed.
Lemma RmaxLess1 : forall r1 r2, r1 <= Rmax r1 r2.
Proof.
intros r1 r2; unfold Rmax in |- *; case (Rle_dec r1 r2); auto with real.
Qed.
Lemma RmaxLess2 : forall r1 r2, r2 <= Rmax r1 r2.
Proof.
intros r1 r2; unfold Rmax in |- *; case (Rle_dec r1 r2); auto with real.
Qed.
Lemma Rmax_comm : forall p q:R, Rmax p q = Rmax q p.
Proof.
intros p q; unfold Rmax in |- *; case (Rle_dec p q); case (Rle_dec q p); auto;
intros H1 H2; apply Rle_antisym; auto with real.
Qed.
Notation RmaxSym := Rmax_comm (only parsing).
Lemma RmaxRmult :
forall (p q:R) r, 0 <= r -> Rmax (r * p) (r * q) = r * Rmax p q.
Proof.
intros p q r H; unfold Rmax in |- *.
case (Rle_dec p q); case (Rle_dec (r * p) (r * q)); auto; intros H1 H2; auto.
case H; intros E1.
case H1; auto with real.
rewrite <- E1; repeat rewrite Rmult_0_l; auto.
case H; intros E1.
case H2; auto with real.
apply Rmult_le_reg_l with (r := r); auto.
rewrite <- E1; repeat rewrite Rmult_0_l; auto.
Qed.
Lemma Rmax_stable_in_negreal : forall x y:negreal, Rmax x y < 0.
Proof.
intros; unfold Rmax in |- *; case (Rle_dec x y); intro;
[ apply (cond_neg y) | apply (cond_neg x) ].
Qed.
(*******************************)
(** * Rabsolu *)
(*******************************)
(*********)
Lemma Rcase_abs : forall r, {r < 0} + {r >= 0}.
Proof.
intro; generalize (Rle_dec 0 r); intro X; elim X; intro; clear X.
right; apply (Rle_ge 0 r a).
left; fold (0 > r) in |- *; apply (Rnot_le_lt 0 r b).
Qed.
(*********)
Definition Rabs r : R :=
match Rcase_abs r with
| left _ => - r
| right _ => r
end.
(*********)
Lemma Rabs_R0 : Rabs 0 = 0.
Proof.
unfold Rabs in |- *; case (Rcase_abs 0); auto; intro.
generalize (Rlt_irrefl 0); intro; elimtype False; auto.
Qed.
Lemma Rabs_R1 : Rabs 1 = 1.
Proof.
unfold Rabs in |- *; case (Rcase_abs 1); auto with real.
intros H; absurd (1 < 0); auto with real.
Qed.
(*********)
Lemma Rabs_no_R0 : forall r, r <> 0 -> Rabs r <> 0.
Proof.
intros; unfold Rabs in |- *; case (Rcase_abs r); intro; auto.
apply Ropp_neq_0_compat; auto.
Qed.
(*********)
Lemma Rabs_left : forall r, r < 0 -> Rabs r = - r.
Proof.
intros; unfold Rabs in |- *; case (Rcase_abs r); trivial; intro;
absurd (r >= 0).
exact (Rlt_not_ge r 0 H).
assumption.
Qed.
(*********)
Lemma Rabs_right : forall r, r >= 0 -> Rabs r = r.
Proof.
intros; unfold Rabs in |- *; case (Rcase_abs r); intro.
absurd (r >= 0).
exact (Rlt_not_ge r 0 r0).
assumption.
trivial.
Qed.
Lemma Rabs_left1 : forall a:R, a <= 0 -> Rabs a = - a.
Proof.
intros a H; case H; intros H1.
apply Rabs_left; auto.
rewrite H1; simpl in |- *; rewrite Rabs_right; auto with real.
Qed.
(*********)
Lemma Rabs_pos : forall x:R, 0 <= Rabs x.
Proof.
intros; unfold Rabs in |- *; case (Rcase_abs x); intro.
generalize (Ropp_lt_gt_contravar x 0 r); intro; unfold Rgt in H;
rewrite Ropp_0 in H; unfold Rle in |- *; left; assumption.
apply Rge_le; assumption.
Qed.
Lemma RRle_abs : forall x:R, x <= Rabs x.
Proof.
intro; unfold Rabs in |- *; case (Rcase_abs x); intros; fourier.
Qed.
(*********)
Lemma Rabs_pos_eq : forall x:R, 0 <= x -> Rabs x = x.
Proof.
intros; unfold Rabs in |- *; case (Rcase_abs x); intro;
[ generalize (Rgt_not_le 0 x r); intro; elimtype False; auto | trivial ].
Qed.
(*********)
Lemma Rabs_Rabsolu : forall x:R, Rabs (Rabs x) = Rabs x.
Proof.
intro; apply (Rabs_pos_eq (Rabs x) (Rabs_pos x)).
Qed.
(*********)
Lemma Rabs_pos_lt : forall x:R, x <> 0 -> 0 < Rabs x.
Proof.
intros; generalize (Rabs_pos x); intro; unfold Rle in H0; elim H0; intro;
auto.
elimtype False; clear H0; elim H; clear H; generalize H1; unfold Rabs in |- *;
case (Rcase_abs x); intros; auto.
clear r H1; generalize (Rplus_eq_compat_l x 0 (- x) H0);
rewrite (let (H1, H2) := Rplus_ne x in H1); rewrite (Rplus_opp_r x);
trivial.
Qed.
(*********)
Lemma Rabs_minus_sym : forall x y:R, Rabs (x - y) = Rabs (y - x).
Proof.
intros; unfold Rabs in |- *; case (Rcase_abs (x - y));
case (Rcase_abs (y - x)); intros.
generalize (Rminus_lt y x r); generalize (Rminus_lt x y r0); intros;
generalize (Rlt_asym x y H); intro; elimtype False;
auto.
rewrite (Ropp_minus_distr x y); trivial.
rewrite (Ropp_minus_distr y x); trivial.
unfold Rge in r, r0; elim r; elim r0; intros; clear r r0.
generalize (Ropp_lt_gt_0_contravar (x - y) H); rewrite (Ropp_minus_distr x y);
intro; unfold Rgt in H0; generalize (Rlt_asym 0 (y - x) H0);
intro; elimtype False; auto.
rewrite (Rminus_diag_uniq x y H); trivial.
rewrite (Rminus_diag_uniq y x H0); trivial.
rewrite (Rminus_diag_uniq y x H0); trivial.
Qed.
(*********)
Lemma Rabs_mult : forall x y:R, Rabs (x * y) = Rabs x * Rabs y.
Proof.
intros; unfold Rabs in |- *; case (Rcase_abs (x * y)); case (Rcase_abs x);
case (Rcase_abs y); intros; auto.
generalize (Rmult_lt_gt_compat_neg_l y x 0 r r0); intro;
rewrite (Rmult_0_r y) in H; generalize (Rlt_asym (x * y) 0 r1);
intro; unfold Rgt in H; elimtype False; rewrite (Rmult_comm y x) in H;
auto.
rewrite (Ropp_mult_distr_l_reverse x y); trivial.
rewrite (Rmult_comm x (- y)); rewrite (Ropp_mult_distr_l_reverse y x);
rewrite (Rmult_comm x y); trivial.
unfold Rge in r, r0; elim r; elim r0; clear r r0; intros; unfold Rgt in H, H0.
generalize (Rmult_lt_compat_l x 0 y H H0); intro; rewrite (Rmult_0_r x) in H1;
generalize (Rlt_asym (x * y) 0 r1); intro; elimtype False;
auto.
rewrite H in r1; rewrite (Rmult_0_l y) in r1; generalize (Rlt_irrefl 0);
intro; elimtype False; auto.
rewrite H0 in r1; rewrite (Rmult_0_r x) in r1; generalize (Rlt_irrefl 0);
intro; elimtype False; auto.
rewrite H0 in r1; rewrite (Rmult_0_r x) in r1; generalize (Rlt_irrefl 0);
intro; elimtype False; auto.
rewrite (Rmult_opp_opp x y); trivial.
unfold Rge in r, r1; elim r; elim r1; clear r r1; intros; unfold Rgt in H0, H.
generalize (Rmult_lt_compat_l y x 0 H0 r0); intro;
rewrite (Rmult_0_r y) in H1; rewrite (Rmult_comm y x) in H1;
generalize (Rlt_asym (x * y) 0 H1); intro; elimtype False;
auto.
generalize (Rlt_dichotomy_converse x 0 (or_introl (x > 0) r0));
generalize (Rlt_dichotomy_converse y 0 (or_intror (y < 0) H0));
intros; generalize (Rmult_integral x y H); intro;
elim H3; intro; elimtype False; auto.
rewrite H0 in H; rewrite (Rmult_0_r x) in H; unfold Rgt in H;
generalize (Rlt_irrefl 0); intro; elimtype False;
auto.
rewrite H0; rewrite (Rmult_0_r x); rewrite (Rmult_0_r (- x)); trivial.
unfold Rge in r0, r1; elim r0; elim r1; clear r0 r1; intros;
unfold Rgt in H0, H.
generalize (Rmult_lt_compat_l x y 0 H0 r); intro; rewrite (Rmult_0_r x) in H1;
generalize (Rlt_asym (x * y) 0 H1); intro; elimtype False;
auto.
generalize (Rlt_dichotomy_converse y 0 (or_introl (y > 0) r));
generalize (Rlt_dichotomy_converse 0 x (or_introl (0 > x) H0));
intros; generalize (Rmult_integral x y H); intro;
elim H3; intro; elimtype False; auto.
rewrite H0 in H; rewrite (Rmult_0_l y) in H; unfold Rgt in H;
generalize (Rlt_irrefl 0); intro; elimtype False;
auto.
rewrite H0; rewrite (Rmult_0_l y); rewrite (Rmult_0_l (- y)); trivial.
Qed.
(*********)
Lemma Rabs_Rinv : forall r, r <> 0 -> Rabs (/ r) = / Rabs r.
Proof.
intro; unfold Rabs in |- *; case (Rcase_abs r); case (Rcase_abs (/ r)); auto;
intros.
apply Ropp_inv_permute; auto.
generalize (Rinv_lt_0_compat r r1); intro; unfold Rge in r0; elim r0; intros.
unfold Rgt in H1; generalize (Rlt_asym 0 (/ r) H1); intro; elimtype False;
auto.
generalize (Rlt_dichotomy_converse (/ r) 0 (or_introl (/ r > 0) H0)); intro;
elimtype False; auto.
unfold Rge in r1; elim r1; clear r1; intro.
unfold Rgt in H0; generalize (Rlt_asym 0 (/ r) (Rinv_0_lt_compat r H0));
intro; elimtype False; auto.
elimtype False; auto.
Qed.
Lemma Rabs_Ropp : forall x:R, Rabs (- x) = Rabs x.
Proof.
intro; cut (- x = -1 * x).
intros; rewrite H.
rewrite Rabs_mult.
cut (Rabs (-1) = 1).
intros; rewrite H0.
ring.
unfold Rabs in |- *; case (Rcase_abs (-1)).
intro; ring.
intro H0; generalize (Rge_le (-1) 0 H0); intros.
generalize (Ropp_le_ge_contravar 0 (-1) H1).
rewrite Ropp_involutive; rewrite Ropp_0.
intro; generalize (Rgt_not_le 1 0 Rlt_0_1); intro; generalize (Rge_le 0 1 H2);
intro; elimtype False; auto.
ring.
Qed.
(*********)
Lemma Rabs_triang : forall a b:R, Rabs (a + b) <= Rabs a + Rabs b.
Proof.
intros a b; unfold Rabs in |- *; case (Rcase_abs (a + b)); case (Rcase_abs a);
case (Rcase_abs b); intros.
apply (Req_le (- (a + b)) (- a + - b)); rewrite (Ropp_plus_distr a b);
reflexivity.
(**)
rewrite (Ropp_plus_distr a b); apply (Rplus_le_compat_l (- a) (- b) b);
unfold Rle in |- *; unfold Rge in r; elim r; intro.
left; unfold Rgt in H; generalize (Rplus_lt_compat_l (- b) 0 b H); intro;
elim (Rplus_ne (- b)); intros v w; rewrite v in H0;
clear v w; rewrite (Rplus_opp_l b) in H0; apply (Rlt_trans (- b) 0 b H0 H).
right; rewrite H; apply Ropp_0.
(**)
rewrite (Ropp_plus_distr a b); rewrite (Rplus_comm (- a) (- b));
rewrite (Rplus_comm a (- b)); apply (Rplus_le_compat_l (- b) (- a) a);
unfold Rle in |- *; unfold Rge in r0; elim r0; intro.
left; unfold Rgt in H; generalize (Rplus_lt_compat_l (- a) 0 a H); intro;
elim (Rplus_ne (- a)); intros v w; rewrite v in H0;
clear v w; rewrite (Rplus_opp_l a) in H0; apply (Rlt_trans (- a) 0 a H0 H).
right; rewrite H; apply Ropp_0.
(**)
elimtype False; generalize (Rplus_ge_compat_l a b 0 r); intro;
elim (Rplus_ne a); intros v w; rewrite v in H; clear v w;
generalize (Rge_trans (a + b) a 0 H r0); intro; clear H;
unfold Rge in H0; elim H0; intro; clear H0.
unfold Rgt in H; generalize (Rlt_asym (a + b) 0 r1); intro; auto.
absurd (a + b = 0); auto.
apply (Rlt_dichotomy_converse (a + b) 0); left; assumption.
(**)
elimtype False; generalize (Rplus_lt_compat_l a b 0 r); intro;
elim (Rplus_ne a); intros v w; rewrite v in H; clear v w;
generalize (Rlt_trans (a + b) a 0 H r0); intro; clear H;
unfold Rge in r1; elim r1; clear r1; intro.
unfold Rgt in H; generalize (Rlt_trans (a + b) 0 (a + b) H0 H); intro;
apply (Rlt_irrefl (a + b)); assumption.
rewrite H in H0; apply (Rlt_irrefl 0); assumption.
(**)
rewrite (Rplus_comm a b); rewrite (Rplus_comm (- a) b);
apply (Rplus_le_compat_l b a (- a)); apply (Rminus_le a (- a));
unfold Rminus in |- *; rewrite (Ropp_involutive a);
generalize (Rplus_lt_compat_l a a 0 r0); clear r r1;
intro; elim (Rplus_ne a); intros v w; rewrite v in H;
clear v w; generalize (Rlt_trans (a + a) a 0 H r0);
intro; apply (Rlt_le (a + a) 0 H0).
(**)
apply (Rplus_le_compat_l a b (- b)); apply (Rminus_le b (- b));
unfold Rminus in |- *; rewrite (Ropp_involutive b);
generalize (Rplus_lt_compat_l b b 0 r); clear r0 r1;
intro; elim (Rplus_ne b); intros v w; rewrite v in H;
clear v w; generalize (Rlt_trans (b + b) b 0 H r);
intro; apply (Rlt_le (b + b) 0 H0).
(**)
unfold Rle in |- *; right; reflexivity.
Qed.
(*********)
Lemma Rabs_triang_inv : forall a b:R, Rabs a - Rabs b <= Rabs (a - b).
Proof.
intros; apply (Rplus_le_reg_l (Rabs b) (Rabs a - Rabs b) (Rabs (a - b)));
unfold Rminus in |- *; rewrite <- (Rplus_assoc (Rabs b) (Rabs a) (- Rabs b));
rewrite (Rplus_comm (Rabs b) (Rabs a));
rewrite (Rplus_assoc (Rabs a) (Rabs b) (- Rabs b));
rewrite (Rplus_opp_r (Rabs b)); rewrite (proj1 (Rplus_ne (Rabs a)));
replace (Rabs a) with (Rabs (a + 0)).
rewrite <- (Rplus_opp_r b); rewrite <- (Rplus_assoc a b (- b));
rewrite (Rplus_comm a b); rewrite (Rplus_assoc b a (- b)).
exact (Rabs_triang b (a + - b)).
rewrite (proj1 (Rplus_ne a)); trivial.
Qed.
(* ||a|-|b||<=|a-b| *)
Lemma Rabs_triang_inv2 : forall a b:R, Rabs (Rabs a - Rabs b) <= Rabs (a - b).
Proof.
cut
(forall a b:R, Rabs b <= Rabs a -> Rabs (Rabs a - Rabs b) <= Rabs (a - b)).
intros; destruct (Rtotal_order (Rabs a) (Rabs b)) as [Hlt| [Heq| Hgt]].
rewrite <- (Rabs_Ropp (Rabs a - Rabs b)); rewrite <- (Rabs_Ropp (a - b));
do 2 rewrite Ropp_minus_distr.
apply H; left; assumption.
rewrite Heq; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply Rabs_pos.
apply H; left; assumption.
intros; replace (Rabs (Rabs a - Rabs b)) with (Rabs a - Rabs b).
apply Rabs_triang_inv.
rewrite (Rabs_right (Rabs a - Rabs b));
[ reflexivity
| apply Rle_ge; apply Rplus_le_reg_l with (Rabs b); rewrite Rplus_0_r;
replace (Rabs b + (Rabs a - Rabs b)) with (Rabs a);
[ assumption | ring ] ].
Qed.
(*********)
Lemma Rabs_def1 : forall x a:R, x < a -> - a < x -> Rabs x < a.
Proof.
unfold Rabs in |- *; intros; case (Rcase_abs x); intro.
generalize (Ropp_lt_gt_contravar (- a) x H0); unfold Rgt in |- *;
rewrite Ropp_involutive; intro; assumption.
assumption.
Qed.
(*********)
Lemma Rabs_def2 : forall x a:R, Rabs x < a -> x < a /\ - a < x.
Proof.
unfold Rabs in |- *; intro x; case (Rcase_abs x); intros.
generalize (Ropp_gt_lt_0_contravar x r); unfold Rgt in |- *; intro;
generalize (Rlt_trans 0 (- x) a H0 H); intro; split.
apply (Rlt_trans x 0 a r H1).
generalize (Ropp_lt_gt_contravar (- x) a H); rewrite (Ropp_involutive x);
unfold Rgt in |- *; trivial.
fold (a > x) in H; generalize (Rgt_ge_trans a x 0 H r); intro;
generalize (Ropp_lt_gt_0_contravar a H0); intro; fold (0 > - a) in |- *;
generalize (Rge_gt_trans x 0 (- a) r H1); unfold Rgt in |- *;
intro; split; assumption.
Qed.
Lemma RmaxAbs :
forall (p q:R) r, p <= q -> q <= r -> Rabs q <= Rmax (Rabs p) (Rabs r).
Proof.
intros p q r H' H'0; case (Rle_or_lt 0 p); intros H'1.
repeat rewrite Rabs_right; auto with real.
apply Rle_trans with r; auto with real.
apply RmaxLess2; auto.
apply Rge_trans with p; auto with real; apply Rge_trans with q;
auto with real.
apply Rge_trans with p; auto with real.
rewrite (Rabs_left p); auto.
case (Rle_or_lt 0 q); intros H'2.
repeat rewrite Rabs_right; auto with real.
apply Rle_trans with r; auto.
apply RmaxLess2; auto.
apply Rge_trans with q; auto with real.
rewrite (Rabs_left q); auto.
case (Rle_or_lt 0 r); intros H'3.
repeat rewrite Rabs_right; auto with real.
apply Rle_trans with (- p); auto with real.
apply RmaxLess1; auto.
rewrite (Rabs_left r); auto.
apply Rle_trans with (- p); auto with real.
apply RmaxLess1; auto.
Qed.
Lemma Rabs_Zabs : forall z:Z, Rabs (IZR z) = IZR (Zabs z).
Proof.
intros z; case z; simpl in |- *; auto with real.
apply Rabs_right; auto with real.
intros p0; apply Rabs_right; auto with real zarith.
intros p0; rewrite Rabs_Ropp.
apply Rabs_right; auto with real zarith.
Qed.
|