1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import Rbase.
Require Import Rfunctions.
Require Import Rtrigo1.
Require Import SeqSeries.
Require Export Ranalysis1.
Require Export Ranalysis2.
Require Export Ranalysis3.
Require Export Rtopology.
Require Export MVT.
Require Export PSeries_reg.
Require Export Exp_prop.
Require Export Rtrigo_reg.
Require Export Rsqrt_def.
Require Export R_sqrt.
Require Export Rtrigo_calc.
Require Export Rgeom.
Require Export RList.
Require Export Sqrt_reg.
Require Export Ranalysis4.
Require Export Rpower.
Local Open Scope R_scope.
Axiom AppVar : R.
(**********)
Ltac intro_hyp_glob trm :=
match constr:trm with
| (?X1 + ?X2)%F =>
match goal with
| |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2
| |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2
| _ => idtac
end
| (?X1 - ?X2)%F =>
match goal with
| |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2
| |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2
| _ => idtac
end
| (?X1 * ?X2)%F =>
match goal with
| |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2
| |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2
| _ => idtac
end
| (?X1 / ?X2)%F =>
let aux := constr:X2 in
match goal with
| _:(forall x0:R, aux x0 <> 0) |- (derivable _) =>
intro_hyp_glob X1; intro_hyp_glob X2
| _:(forall x0:R, aux x0 <> 0) |- (continuity _) =>
intro_hyp_glob X1; intro_hyp_glob X2
| |- (derivable _) =>
cut (forall x0:R, aux x0 <> 0);
[ intro; intro_hyp_glob X1; intro_hyp_glob X2 | try assumption ]
| |- (continuity _) =>
cut (forall x0:R, aux x0 <> 0);
[ intro; intro_hyp_glob X1; intro_hyp_glob X2 | try assumption ]
| _ => idtac
end
| (comp ?X1 ?X2) =>
match goal with
| |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2
| |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2
| _ => idtac
end
| (- ?X1)%F =>
match goal with
| |- (derivable _) => intro_hyp_glob X1
| |- (continuity _) => intro_hyp_glob X1
| _ => idtac
end
| (/ ?X1)%F =>
let aux := constr:X1 in
match goal with
| _:(forall x0:R, aux x0 <> 0) |- (derivable _) =>
intro_hyp_glob X1
| _:(forall x0:R, aux x0 <> 0) |- (continuity _) =>
intro_hyp_glob X1
| |- (derivable _) =>
cut (forall x0:R, aux x0 <> 0);
[ intro; intro_hyp_glob X1 | try assumption ]
| |- (continuity _) =>
cut (forall x0:R, aux x0 <> 0);
[ intro; intro_hyp_glob X1 | try assumption ]
| _ => idtac
end
| cos => idtac
| sin => idtac
| cosh => idtac
| sinh => idtac
| exp => idtac
| Rsqr => idtac
| sqrt => idtac
| id => idtac
| (fct_cte _) => idtac
| (pow_fct _) => idtac
| Rabs => idtac
| ?X1 =>
let p := constr:X1 in
match goal with
| _:(derivable p) |- _ => idtac
| |- (derivable p) => idtac
| |- (derivable _) =>
cut (True -> derivable p);
[ intro HYPPD; cut (derivable p);
[ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ]
| idtac ]
| _:(continuity p) |- _ => idtac
| |- (continuity p) => idtac
| |- (continuity _) =>
cut (True -> continuity p);
[ intro HYPPD; cut (continuity p);
[ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ]
| idtac ]
| _ => idtac
end
end.
(**********)
Ltac intro_hyp_pt trm pt :=
match constr:trm with
| (?X1 + ?X2)%F =>
match goal with
| |- (derivable_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt
| |- (continuity_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt
| |- (derive_pt _ _ _ = _) =>
intro_hyp_pt X1 pt; intro_hyp_pt X2 pt
| _ => idtac
end
| (?X1 - ?X2)%F =>
match goal with
| |- (derivable_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt
| |- (continuity_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt
| |- (derive_pt _ _ _ = _) =>
intro_hyp_pt X1 pt; intro_hyp_pt X2 pt
| _ => idtac
end
| (?X1 * ?X2)%F =>
match goal with
| |- (derivable_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt
| |- (continuity_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt
| |- (derive_pt _ _ _ = _) =>
intro_hyp_pt X1 pt; intro_hyp_pt X2 pt
| _ => idtac
end
| (?X1 / ?X2)%F =>
let aux := constr:X2 in
match goal with
| _:(aux pt <> 0) |- (derivable_pt _ _) =>
intro_hyp_pt X1 pt; intro_hyp_pt X2 pt
| _:(aux pt <> 0) |- (continuity_pt _ _) =>
intro_hyp_pt X1 pt; intro_hyp_pt X2 pt
| _:(aux pt <> 0) |- (derive_pt _ _ _ = _) =>
intro_hyp_pt X1 pt; intro_hyp_pt X2 pt
| id:(forall x0:R, aux x0 <> 0) |- (derivable_pt _ _) =>
generalize (id pt); intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt
| id:(forall x0:R, aux x0 <> 0) |- (continuity_pt _ _) =>
generalize (id pt); intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt
| id:(forall x0:R, aux x0 <> 0) |- (derive_pt _ _ _ = _) =>
generalize (id pt); intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt
| |- (derivable_pt _ _) =>
cut (aux pt <> 0);
[ intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | try assumption ]
| |- (continuity_pt _ _) =>
cut (aux pt <> 0);
[ intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | try assumption ]
| |- (derive_pt _ _ _ = _) =>
cut (aux pt <> 0);
[ intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | try assumption ]
| _ => idtac
end
| (comp ?X1 ?X2) =>
match goal with
| |- (derivable_pt _ _) =>
let pt_f1 := eval cbv beta in (X2 pt) in
(intro_hyp_pt X1 pt_f1; intro_hyp_pt X2 pt)
| |- (continuity_pt _ _) =>
let pt_f1 := eval cbv beta in (X2 pt) in
(intro_hyp_pt X1 pt_f1; intro_hyp_pt X2 pt)
| |- (derive_pt _ _ _ = _) =>
let pt_f1 := eval cbv beta in (X2 pt) in
(intro_hyp_pt X1 pt_f1; intro_hyp_pt X2 pt)
| _ => idtac
end
| (- ?X1)%F =>
match goal with
| |- (derivable_pt _ _) => intro_hyp_pt X1 pt
| |- (continuity_pt _ _) => intro_hyp_pt X1 pt
| |- (derive_pt _ _ _ = _) => intro_hyp_pt X1 pt
| _ => idtac
end
| (/ ?X1)%F =>
let aux := constr:X1 in
match goal with
| _:(aux pt <> 0) |- (derivable_pt _ _) =>
intro_hyp_pt X1 pt
| _:(aux pt <> 0) |- (continuity_pt _ _) =>
intro_hyp_pt X1 pt
| _:(aux pt <> 0) |- (derive_pt _ _ _ = _) =>
intro_hyp_pt X1 pt
| id:(forall x0:R, aux x0 <> 0) |- (derivable_pt _ _) =>
generalize (id pt); intro; intro_hyp_pt X1 pt
| id:(forall x0:R, aux x0 <> 0) |- (continuity_pt _ _) =>
generalize (id pt); intro; intro_hyp_pt X1 pt
| id:(forall x0:R, aux x0 <> 0) |- (derive_pt _ _ _ = _) =>
generalize (id pt); intro; intro_hyp_pt X1 pt
| |- (derivable_pt _ _) =>
cut (aux pt <> 0); [ intro; intro_hyp_pt X1 pt | try assumption ]
| |- (continuity_pt _ _) =>
cut (aux pt <> 0); [ intro; intro_hyp_pt X1 pt | try assumption ]
| |- (derive_pt _ _ _ = _) =>
cut (aux pt <> 0); [ intro; intro_hyp_pt X1 pt | try assumption ]
| _ => idtac
end
| cos => idtac
| sin => idtac
| cosh => idtac
| sinh => idtac
| exp => idtac
| Rsqr => idtac
| id => idtac
| (fct_cte _) => idtac
| (pow_fct _) => idtac
| sqrt =>
match goal with
| |- (derivable_pt _ _) => cut (0 < pt); [ intro | try assumption ]
| |- (continuity_pt _ _) =>
cut (0 <= pt); [ intro | try assumption ]
| |- (derive_pt _ _ _ = _) =>
cut (0 < pt); [ intro | try assumption ]
| _ => idtac
end
| Rabs =>
match goal with
| |- (derivable_pt _ _) =>
cut (pt <> 0); [ intro | try assumption ]
| _ => idtac
end
| ?X1 =>
let p := constr:X1 in
match goal with
| _:(derivable_pt p pt) |- _ => idtac
| |- (derivable_pt p pt) => idtac
| |- (derivable_pt _ _) =>
cut (True -> derivable_pt p pt);
[ intro HYPPD; cut (derivable_pt p pt);
[ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ]
| idtac ]
| _:(continuity_pt p pt) |- _ => idtac
| |- (continuity_pt p pt) => idtac
| |- (continuity_pt _ _) =>
cut (True -> continuity_pt p pt);
[ intro HYPPD; cut (continuity_pt p pt);
[ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ]
| idtac ]
| |- (derive_pt _ _ _ = _) =>
cut (True -> derivable_pt p pt);
[ intro HYPPD; cut (derivable_pt p pt);
[ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ]
| idtac ]
| _ => idtac
end
end.
(**********)
Ltac is_diff_pt :=
match goal with
| |- (derivable_pt Rsqr _) =>
(* fonctions de base *)
apply derivable_pt_Rsqr
| |- (derivable_pt id ?X1) => apply (derivable_pt_id X1)
| |- (derivable_pt (fct_cte _) _) => apply derivable_pt_const
| |- (derivable_pt sin _) => apply derivable_pt_sin
| |- (derivable_pt cos _) => apply derivable_pt_cos
| |- (derivable_pt sinh _) => apply derivable_pt_sinh
| |- (derivable_pt cosh _) => apply derivable_pt_cosh
| |- (derivable_pt exp _) => apply derivable_pt_exp
| |- (derivable_pt (pow_fct _) _) =>
unfold pow_fct in |- *; apply derivable_pt_pow
| |- (derivable_pt sqrt ?X1) =>
apply (derivable_pt_sqrt X1);
assumption ||
unfold plus_fct, minus_fct, opp_fct, mult_fct, div_fct, inv_fct,
comp, id, fct_cte, pow_fct in |- *
| |- (derivable_pt Rabs ?X1) =>
apply (Rderivable_pt_abs X1);
assumption ||
unfold plus_fct, minus_fct, opp_fct, mult_fct, div_fct, inv_fct,
comp, id, fct_cte, pow_fct in |- *
(* regles de differentiabilite *)
(* PLUS *)
| |- (derivable_pt (?X1 + ?X2) ?X3) =>
apply (derivable_pt_plus X1 X2 X3); is_diff_pt
(* MOINS *)
| |- (derivable_pt (?X1 - ?X2) ?X3) =>
apply (derivable_pt_minus X1 X2 X3); is_diff_pt
(* OPPOSE *)
| |- (derivable_pt (- ?X1) ?X2) =>
apply (derivable_pt_opp X1 X2);
is_diff_pt
(* MULTIPLICATION PAR UN SCALAIRE *)
| |- (derivable_pt (mult_real_fct ?X1 ?X2) ?X3) =>
apply (derivable_pt_scal X2 X1 X3); is_diff_pt
(* MULTIPLICATION *)
| |- (derivable_pt (?X1 * ?X2) ?X3) =>
apply (derivable_pt_mult X1 X2 X3); is_diff_pt
(* DIVISION *)
| |- (derivable_pt (?X1 / ?X2) ?X3) =>
apply (derivable_pt_div X1 X2 X3);
[ is_diff_pt
| is_diff_pt
| try
assumption ||
unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct,
comp, pow_fct, id, fct_cte in |- * ]
| |- (derivable_pt (/ ?X1) ?X2) =>
(* INVERSION *)
apply (derivable_pt_inv X1 X2);
[ assumption ||
unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct,
comp, pow_fct, id, fct_cte in |- *
| is_diff_pt ]
| |- (derivable_pt (comp ?X1 ?X2) ?X3) =>
(* COMPOSITION *)
apply (derivable_pt_comp X2 X1 X3); is_diff_pt
| _:(derivable_pt ?X1 ?X2) |- (derivable_pt ?X1 ?X2) =>
assumption
| _:(derivable ?X1) |- (derivable_pt ?X1 ?X2) =>
cut (derivable X1); [ intro HypDDPT; apply HypDDPT | assumption ]
| |- (True -> derivable_pt _ _) =>
intro HypTruE; clear HypTruE; is_diff_pt
| _ =>
try
unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id,
fct_cte, comp, pow_fct in |- *
end.
(**********)
Ltac is_diff_glob :=
match goal with
| |- (derivable Rsqr) =>
(* fonctions de base *)
apply derivable_Rsqr
| |- (derivable id) => apply derivable_id
| |- (derivable (fct_cte _)) => apply derivable_const
| |- (derivable sin) => apply derivable_sin
| |- (derivable cos) => apply derivable_cos
| |- (derivable cosh) => apply derivable_cosh
| |- (derivable sinh) => apply derivable_sinh
| |- (derivable exp) => apply derivable_exp
| |- (derivable (pow_fct _)) =>
unfold pow_fct in |- *;
apply derivable_pow
(* regles de differentiabilite *)
(* PLUS *)
| |- (derivable (?X1 + ?X2)) =>
apply (derivable_plus X1 X2); is_diff_glob
(* MOINS *)
| |- (derivable (?X1 - ?X2)) =>
apply (derivable_minus X1 X2); is_diff_glob
(* OPPOSE *)
| |- (derivable (- ?X1)) =>
apply (derivable_opp X1);
is_diff_glob
(* MULTIPLICATION PAR UN SCALAIRE *)
| |- (derivable (mult_real_fct ?X1 ?X2)) =>
apply (derivable_scal X2 X1); is_diff_glob
(* MULTIPLICATION *)
| |- (derivable (?X1 * ?X2)) =>
apply (derivable_mult X1 X2); is_diff_glob
(* DIVISION *)
| |- (derivable (?X1 / ?X2)) =>
apply (derivable_div X1 X2);
[ is_diff_glob
| is_diff_glob
| try
assumption ||
unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct,
id, fct_cte, comp, pow_fct in |- * ]
| |- (derivable (/ ?X1)) =>
(* INVERSION *)
apply (derivable_inv X1);
[ try
assumption ||
unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct,
id, fct_cte, comp, pow_fct in |- *
| is_diff_glob ]
| |- (derivable (comp sqrt _)) =>
(* COMPOSITION *)
unfold derivable in |- *; intro; try is_diff_pt
| |- (derivable (comp Rabs _)) =>
unfold derivable in |- *; intro; try is_diff_pt
| |- (derivable (comp ?X1 ?X2)) =>
apply (derivable_comp X2 X1); is_diff_glob
| _:(derivable ?X1) |- (derivable ?X1) => assumption
| |- (True -> derivable _) =>
intro HypTruE; clear HypTruE; is_diff_glob
| _ =>
try
unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id,
fct_cte, comp, pow_fct in |- *
end.
(**********)
Ltac is_cont_pt :=
match goal with
| |- (continuity_pt Rsqr _) =>
(* fonctions de base *)
apply derivable_continuous_pt; apply derivable_pt_Rsqr
| |- (continuity_pt id ?X1) =>
apply derivable_continuous_pt; apply (derivable_pt_id X1)
| |- (continuity_pt (fct_cte _) _) =>
apply derivable_continuous_pt; apply derivable_pt_const
| |- (continuity_pt sin _) =>
apply derivable_continuous_pt; apply derivable_pt_sin
| |- (continuity_pt cos _) =>
apply derivable_continuous_pt; apply derivable_pt_cos
| |- (continuity_pt sinh _) =>
apply derivable_continuous_pt; apply derivable_pt_sinh
| |- (continuity_pt cosh _) =>
apply derivable_continuous_pt; apply derivable_pt_cosh
| |- (continuity_pt exp _) =>
apply derivable_continuous_pt; apply derivable_pt_exp
| |- (continuity_pt (pow_fct _) _) =>
unfold pow_fct in |- *; apply derivable_continuous_pt;
apply derivable_pt_pow
| |- (continuity_pt sqrt ?X1) =>
apply continuity_pt_sqrt;
assumption ||
unfold plus_fct, minus_fct, opp_fct, mult_fct, div_fct, inv_fct,
comp, id, fct_cte, pow_fct in |- *
| |- (continuity_pt Rabs ?X1) =>
apply (Rcontinuity_abs X1)
(* regles de differentiabilite *)
(* PLUS *)
| |- (continuity_pt (?X1 + ?X2) ?X3) =>
apply (continuity_pt_plus X1 X2 X3); is_cont_pt
(* MOINS *)
| |- (continuity_pt (?X1 - ?X2) ?X3) =>
apply (continuity_pt_minus X1 X2 X3); is_cont_pt
(* OPPOSE *)
| |- (continuity_pt (- ?X1) ?X2) =>
apply (continuity_pt_opp X1 X2);
is_cont_pt
(* MULTIPLICATION PAR UN SCALAIRE *)
| |- (continuity_pt (mult_real_fct ?X1 ?X2) ?X3) =>
apply (continuity_pt_scal X2 X1 X3); is_cont_pt
(* MULTIPLICATION *)
| |- (continuity_pt (?X1 * ?X2) ?X3) =>
apply (continuity_pt_mult X1 X2 X3); is_cont_pt
(* DIVISION *)
| |- (continuity_pt (?X1 / ?X2) ?X3) =>
apply (continuity_pt_div X1 X2 X3);
[ is_cont_pt
| is_cont_pt
| try
assumption ||
unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct,
comp, id, fct_cte, pow_fct in |- * ]
| |- (continuity_pt (/ ?X1) ?X2) =>
(* INVERSION *)
apply (continuity_pt_inv X1 X2);
[ is_cont_pt
| assumption ||
unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct,
comp, id, fct_cte, pow_fct in |- * ]
| |- (continuity_pt (comp ?X1 ?X2) ?X3) =>
(* COMPOSITION *)
apply (continuity_pt_comp X2 X1 X3); is_cont_pt
| _:(continuity_pt ?X1 ?X2) |- (continuity_pt ?X1 ?X2) =>
assumption
| _:(continuity ?X1) |- (continuity_pt ?X1 ?X2) =>
cut (continuity X1); [ intro HypDDPT; apply HypDDPT | assumption ]
| _:(derivable_pt ?X1 ?X2) |- (continuity_pt ?X1 ?X2) =>
apply derivable_continuous_pt; assumption
| _:(derivable ?X1) |- (continuity_pt ?X1 ?X2) =>
cut (continuity X1);
[ intro HypDDPT; apply HypDDPT
| apply derivable_continuous; assumption ]
| |- (True -> continuity_pt _ _) =>
intro HypTruE; clear HypTruE; is_cont_pt
| _ =>
try
unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id,
fct_cte, comp, pow_fct in |- *
end.
(**********)
Ltac is_cont_glob :=
match goal with
| |- (continuity Rsqr) =>
(* fonctions de base *)
apply derivable_continuous; apply derivable_Rsqr
| |- (continuity id) => apply derivable_continuous; apply derivable_id
| |- (continuity (fct_cte _)) =>
apply derivable_continuous; apply derivable_const
| |- (continuity sin) => apply derivable_continuous; apply derivable_sin
| |- (continuity cos) => apply derivable_continuous; apply derivable_cos
| |- (continuity exp) => apply derivable_continuous; apply derivable_exp
| |- (continuity (pow_fct _)) =>
unfold pow_fct in |- *; apply derivable_continuous; apply derivable_pow
| |- (continuity sinh) =>
apply derivable_continuous; apply derivable_sinh
| |- (continuity cosh) =>
apply derivable_continuous; apply derivable_cosh
| |- (continuity Rabs) =>
apply Rcontinuity_abs
(* regles de continuite *)
(* PLUS *)
| |- (continuity (?X1 + ?X2)) =>
apply (continuity_plus X1 X2);
try is_cont_glob || assumption
(* MOINS *)
| |- (continuity (?X1 - ?X2)) =>
apply (continuity_minus X1 X2);
try is_cont_glob || assumption
(* OPPOSE *)
| |- (continuity (- ?X1)) =>
apply (continuity_opp X1); try is_cont_glob || assumption
(* INVERSE *)
| |- (continuity (/ ?X1)) =>
apply (continuity_inv X1);
try is_cont_glob || assumption
(* MULTIPLICATION PAR UN SCALAIRE *)
| |- (continuity (mult_real_fct ?X1 ?X2)) =>
apply (continuity_scal X2 X1);
try is_cont_glob || assumption
(* MULTIPLICATION *)
| |- (continuity (?X1 * ?X2)) =>
apply (continuity_mult X1 X2);
try is_cont_glob || assumption
(* DIVISION *)
| |- (continuity (?X1 / ?X2)) =>
apply (continuity_div X1 X2);
[ try is_cont_glob || assumption
| try is_cont_glob || assumption
| try
assumption ||
unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct,
id, fct_cte, pow_fct in |- * ]
| |- (continuity (comp sqrt _)) =>
(* COMPOSITION *)
unfold continuity_pt in |- *; intro; try is_cont_pt
| |- (continuity (comp ?X1 ?X2)) =>
apply (continuity_comp X2 X1); try is_cont_glob || assumption
| _:(continuity ?X1) |- (continuity ?X1) => assumption
| |- (True -> continuity _) =>
intro HypTruE; clear HypTruE; is_cont_glob
| _:(derivable ?X1) |- (continuity ?X1) =>
apply derivable_continuous; assumption
| _ =>
try
unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id,
fct_cte, comp, pow_fct in |- *
end.
(**********)
Ltac rew_term trm :=
match constr:trm with
| (?X1 + ?X2) =>
let p1 := rew_term X1 with p2 := rew_term X2 in
match constr:p1 with
| (fct_cte ?X3) =>
match constr:p2 with
| (fct_cte ?X4) => constr:(fct_cte (X3 + X4))
| _ => constr:(p1 + p2)%F
end
| _ => constr:(p1 + p2)%F
end
| (?X1 - ?X2) =>
let p1 := rew_term X1 with p2 := rew_term X2 in
match constr:p1 with
| (fct_cte ?X3) =>
match constr:p2 with
| (fct_cte ?X4) => constr:(fct_cte (X3 - X4))
| _ => constr:(p1 - p2)%F
end
| _ => constr:(p1 - p2)%F
end
| (?X1 / ?X2) =>
let p1 := rew_term X1 with p2 := rew_term X2 in
match constr:p1 with
| (fct_cte ?X3) =>
match constr:p2 with
| (fct_cte ?X4) => constr:(fct_cte (X3 / X4))
| _ => constr:(p1 / p2)%F
end
| _ =>
match constr:p2 with
| (fct_cte ?X4) => constr:(p1 * fct_cte (/ X4))%F
| _ => constr:(p1 / p2)%F
end
end
| (?X1 * / ?X2) =>
let p1 := rew_term X1 with p2 := rew_term X2 in
match constr:p1 with
| (fct_cte ?X3) =>
match constr:p2 with
| (fct_cte ?X4) => constr:(fct_cte (X3 / X4))
| _ => constr:(p1 / p2)%F
end
| _ =>
match constr:p2 with
| (fct_cte ?X4) => constr:(p1 * fct_cte (/ X4))%F
| _ => constr:(p1 / p2)%F
end
end
| (?X1 * ?X2) =>
let p1 := rew_term X1 with p2 := rew_term X2 in
match constr:p1 with
| (fct_cte ?X3) =>
match constr:p2 with
| (fct_cte ?X4) => constr:(fct_cte (X3 * X4))
| _ => constr:(p1 * p2)%F
end
| _ => constr:(p1 * p2)%F
end
| (- ?X1) =>
let p := rew_term X1 in
match constr:p with
| (fct_cte ?X2) => constr:(fct_cte (- X2))
| _ => constr:(- p)%F
end
| (/ ?X1) =>
let p := rew_term X1 in
match constr:p with
| (fct_cte ?X2) => constr:(fct_cte (/ X2))
| _ => constr:(/ p)%F
end
| (?X1 AppVar) => constr:X1
| (?X1 ?X2) =>
let p := rew_term X2 in
match constr:p with
| (fct_cte ?X3) => constr:(fct_cte (X1 X3))
| _ => constr:(comp X1 p)
end
| AppVar => constr:id
| (AppVar ^ ?X1) => constr:(pow_fct X1)
| (?X1 ^ ?X2) =>
let p := rew_term X1 in
match constr:p with
| (fct_cte ?X3) => constr:(fct_cte (pow_fct X2 X3))
| _ => constr:(comp (pow_fct X2) p)
end
| ?X1 => constr:(fct_cte X1)
end.
(**********)
Ltac deriv_proof trm pt :=
match constr:trm with
| (?X1 + ?X2)%F =>
let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in
constr:(derivable_pt_plus X1 X2 pt p1 p2)
| (?X1 - ?X2)%F =>
let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in
constr:(derivable_pt_minus X1 X2 pt p1 p2)
| (?X1 * ?X2)%F =>
let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in
constr:(derivable_pt_mult X1 X2 pt p1 p2)
| (?X1 / ?X2)%F =>
match goal with
| id:(?X2 pt <> 0) |- _ =>
let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in
constr:(derivable_pt_div X1 X2 pt p1 p2 id)
| _ => constr:False
end
| (/ ?X1)%F =>
match goal with
| id:(?X1 pt <> 0) |- _ =>
let p1 := deriv_proof X1 pt in
constr:(derivable_pt_inv X1 pt p1 id)
| _ => constr:False
end
| (comp ?X1 ?X2) =>
let pt_f1 := eval cbv beta in (X2 pt) in
let p1 := deriv_proof X1 pt_f1 with p2 := deriv_proof X2 pt in
constr:(derivable_pt_comp X2 X1 pt p2 p1)
| (- ?X1)%F =>
let p1 := deriv_proof X1 pt in
constr:(derivable_pt_opp X1 pt p1)
| sin => constr:(derivable_pt_sin pt)
| cos => constr:(derivable_pt_cos pt)
| sinh => constr:(derivable_pt_sinh pt)
| cosh => constr:(derivable_pt_cosh pt)
| exp => constr:(derivable_pt_exp pt)
| id => constr:(derivable_pt_id pt)
| Rsqr => constr:(derivable_pt_Rsqr pt)
| sqrt =>
match goal with
| id:(0 < pt) |- _ => constr:(derivable_pt_sqrt pt id)
| _ => constr:False
end
| (fct_cte ?X1) => constr:(derivable_pt_const X1 pt)
| ?X1 =>
let aux := constr:X1 in
match goal with
| id:(derivable_pt aux pt) |- _ => constr:id
| id:(derivable aux) |- _ => constr:(id pt)
| _ => constr:False
end
end.
(**********)
Ltac simplify_derive trm pt :=
match constr:trm with
| (?X1 + ?X2)%F =>
try rewrite derive_pt_plus; simplify_derive X1 pt;
simplify_derive X2 pt
| (?X1 - ?X2)%F =>
try rewrite derive_pt_minus; simplify_derive X1 pt;
simplify_derive X2 pt
| (?X1 * ?X2)%F =>
try rewrite derive_pt_mult; simplify_derive X1 pt;
simplify_derive X2 pt
| (?X1 / ?X2)%F =>
try rewrite derive_pt_div; simplify_derive X1 pt; simplify_derive X2 pt
| (comp ?X1 ?X2) =>
let pt_f1 := eval cbv beta in (X2 pt) in
(try rewrite derive_pt_comp; simplify_derive X1 pt_f1;
simplify_derive X2 pt)
| (- ?X1)%F => try rewrite derive_pt_opp; simplify_derive X1 pt
| (/ ?X1)%F =>
try rewrite derive_pt_inv; simplify_derive X1 pt
| (fct_cte ?X1) => try rewrite derive_pt_const
| id => try rewrite derive_pt_id
| sin => try rewrite derive_pt_sin
| cos => try rewrite derive_pt_cos
| sinh => try rewrite derive_pt_sinh
| cosh => try rewrite derive_pt_cosh
| exp => try rewrite derive_pt_exp
| Rsqr => try rewrite derive_pt_Rsqr
| sqrt => try rewrite derive_pt_sqrt
| ?X1 =>
let aux := constr:X1 in
match goal with
| id:(derive_pt aux pt ?X2 = _),H:(derivable aux) |- _ =>
try replace (derive_pt aux pt (H pt)) with (derive_pt aux pt X2);
[ rewrite id | apply pr_nu ]
| id:(derive_pt aux pt ?X2 = _),H:(derivable_pt aux pt) |- _ =>
try replace (derive_pt aux pt H) with (derive_pt aux pt X2);
[ rewrite id | apply pr_nu ]
| _ => idtac
end
| _ => idtac
end.
(**********)
Ltac reg :=
match goal with
| |- (derivable_pt ?X1 ?X2) =>
let trm := eval cbv beta in (X1 AppVar) in
let aux := rew_term trm in
(intro_hyp_pt aux X2;
try (change (derivable_pt aux X2) in |- *; is_diff_pt) || is_diff_pt)
| |- (derivable ?X1) =>
let trm := eval cbv beta in (X1 AppVar) in
let aux := rew_term trm in
(intro_hyp_glob aux;
try (change (derivable aux) in |- *; is_diff_glob) || is_diff_glob)
| |- (continuity ?X1) =>
let trm := eval cbv beta in (X1 AppVar) in
let aux := rew_term trm in
(intro_hyp_glob aux;
try (change (continuity aux) in |- *; is_cont_glob) || is_cont_glob)
| |- (continuity_pt ?X1 ?X2) =>
let trm := eval cbv beta in (X1 AppVar) in
let aux := rew_term trm in
(intro_hyp_pt aux X2;
try (change (continuity_pt aux X2) in |- *; is_cont_pt) || is_cont_pt)
| |- (derive_pt ?X1 ?X2 ?X3 = ?X4) =>
let trm := eval cbv beta in (X1 AppVar) in
let aux := rew_term trm in
intro_hyp_pt aux X2;
(let aux2 := deriv_proof aux X2 in
try
(replace (derive_pt X1 X2 X3) with (derive_pt aux X2 aux2);
[ simplify_derive aux X2;
try unfold plus_fct, minus_fct, mult_fct, div_fct, id, fct_cte,
inv_fct, opp_fct in |- *; ring || ring_simplify
| try apply pr_nu ]) || is_diff_pt)
end.
|