1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
Require Import Rbase.
Require Import Rfunctions.
Open Local Scope R_scope.
Inductive Rlist : Type :=
| nil : Rlist
| cons : R -> Rlist -> Rlist.
Fixpoint In (x:R) (l:Rlist) : Prop :=
match l with
| nil => False
| cons a l' => x = a \/ In x l'
end.
Fixpoint Rlength (l:Rlist) : nat :=
match l with
| nil => 0%nat
| cons a l' => S (Rlength l')
end.
Fixpoint MaxRlist (l:Rlist) : R :=
match l with
| nil => 0
| cons a l1 =>
match l1 with
| nil => a
| cons a' l2 => Rmax a (MaxRlist l1)
end
end.
Fixpoint MinRlist (l:Rlist) : R :=
match l with
| nil => 1
| cons a l1 =>
match l1 with
| nil => a
| cons a' l2 => Rmin a (MinRlist l1)
end
end.
Lemma MaxRlist_P1 : forall (l:Rlist) (x:R), In x l -> x <= MaxRlist l.
Proof.
intros; induction l as [| r l Hrecl].
simpl in H; elim H.
induction l as [| r0 l Hrecl0].
simpl in H; elim H; intro.
simpl in |- *; right; assumption.
elim H0.
replace (MaxRlist (cons r (cons r0 l))) with (Rmax r (MaxRlist (cons r0 l))).
simpl in H; decompose [or] H.
rewrite H0; apply RmaxLess1.
unfold Rmax in |- *; case (Rle_dec r (MaxRlist (cons r0 l))); intro.
apply Hrecl; simpl in |- *; tauto.
apply Rle_trans with (MaxRlist (cons r0 l));
[ apply Hrecl; simpl in |- *; tauto | left; auto with real ].
unfold Rmax in |- *; case (Rle_dec r (MaxRlist (cons r0 l))); intro.
apply Hrecl; simpl in |- *; tauto.
apply Rle_trans with (MaxRlist (cons r0 l));
[ apply Hrecl; simpl in |- *; tauto | left; auto with real ].
reflexivity.
Qed.
Fixpoint AbsList (l:Rlist) (x:R) : Rlist :=
match l with
| nil => nil
| cons a l' => cons (Rabs (a - x) / 2) (AbsList l' x)
end.
Lemma MinRlist_P1 : forall (l:Rlist) (x:R), In x l -> MinRlist l <= x.
Proof.
intros; induction l as [| r l Hrecl].
simpl in H; elim H.
induction l as [| r0 l Hrecl0].
simpl in H; elim H; intro.
simpl in |- *; right; symmetry in |- *; assumption.
elim H0.
replace (MinRlist (cons r (cons r0 l))) with (Rmin r (MinRlist (cons r0 l))).
simpl in H; decompose [or] H.
rewrite H0; apply Rmin_l.
unfold Rmin in |- *; case (Rle_dec r (MinRlist (cons r0 l))); intro.
apply Rle_trans with (MinRlist (cons r0 l)).
assumption.
apply Hrecl; simpl in |- *; tauto.
apply Hrecl; simpl in |- *; tauto.
apply Rle_trans with (MinRlist (cons r0 l)).
apply Rmin_r.
apply Hrecl; simpl in |- *; tauto.
reflexivity.
Qed.
Lemma AbsList_P1 :
forall (l:Rlist) (x y:R), In y l -> In (Rabs (y - x) / 2) (AbsList l x).
Proof.
intros; induction l as [| r l Hrecl].
elim H.
simpl in |- *; simpl in H; elim H; intro.
left; rewrite H0; reflexivity.
right; apply Hrecl; assumption.
Qed.
Lemma MinRlist_P2 :
forall l:Rlist, (forall y:R, In y l -> 0 < y) -> 0 < MinRlist l.
Proof.
intros; induction l as [| r l Hrecl].
apply Rlt_0_1.
induction l as [| r0 l Hrecl0].
simpl in |- *; apply H; simpl in |- *; tauto.
replace (MinRlist (cons r (cons r0 l))) with (Rmin r (MinRlist (cons r0 l))).
unfold Rmin in |- *; case (Rle_dec r (MinRlist (cons r0 l))); intro.
apply H; simpl in |- *; tauto.
apply Hrecl; intros; apply H; simpl in |- *; simpl in H0; tauto.
reflexivity.
Qed.
Lemma AbsList_P2 :
forall (l:Rlist) (x y:R),
In y (AbsList l x) -> exists z : R, In z l /\ y = Rabs (z - x) / 2.
Proof.
intros; induction l as [| r l Hrecl].
elim H.
elim H; intro.
exists r; split.
simpl in |- *; tauto.
assumption.
assert (H1 := Hrecl H0); elim H1; intros; elim H2; clear H2; intros;
exists x0; simpl in |- *; simpl in H2; tauto.
Qed.
Lemma MaxRlist_P2 :
forall l:Rlist, (exists y : R, In y l) -> In (MaxRlist l) l.
Proof.
intros; induction l as [| r l Hrecl].
simpl in H; elim H; trivial.
induction l as [| r0 l Hrecl0].
simpl in |- *; left; reflexivity.
change (In (Rmax r (MaxRlist (cons r0 l))) (cons r (cons r0 l))) in |- *;
unfold Rmax in |- *; case (Rle_dec r (MaxRlist (cons r0 l)));
intro.
right; apply Hrecl; exists r0; left; reflexivity.
left; reflexivity.
Qed.
Fixpoint pos_Rl (l:Rlist) (i:nat) : R :=
match l with
| nil => 0
| cons a l' => match i with
| O => a
| S i' => pos_Rl l' i'
end
end.
Lemma pos_Rl_P1 :
forall (l:Rlist) (a:R),
(0 < Rlength l)%nat ->
pos_Rl (cons a l) (Rlength l) = pos_Rl l (pred (Rlength l)).
Proof.
intros; induction l as [| r l Hrecl];
[ elim (lt_n_O _ H)
| simpl in |- *; case (Rlength l); [ reflexivity | intro; reflexivity ] ].
Qed.
Lemma pos_Rl_P2 :
forall (l:Rlist) (x:R),
In x l <-> (exists i : nat, (i < Rlength l)%nat /\ x = pos_Rl l i).
Proof.
intros; induction l as [| r l Hrecl].
split; intro;
[ elim H | elim H; intros; elim H0; intros; elim (lt_n_O _ H1) ].
split; intro.
elim H; intro.
exists 0%nat; split;
[ simpl in |- *; apply lt_O_Sn | simpl in |- *; apply H0 ].
elim Hrecl; intros; assert (H3 := H1 H0); elim H3; intros; elim H4; intros;
exists (S x0); split;
[ simpl in |- *; apply lt_n_S; assumption | simpl in |- *; assumption ].
elim H; intros; elim H0; intros; elim (zerop x0); intro.
rewrite a in H2; simpl in H2; left; assumption.
right; elim Hrecl; intros; apply H4; assert (H5 : S (pred x0) = x0).
symmetry in |- *; apply S_pred with 0%nat; assumption.
exists (pred x0); split;
[ simpl in H1; apply lt_S_n; rewrite H5; assumption
| rewrite <- H5 in H2; simpl in H2; assumption ].
Qed.
Lemma Rlist_P1 :
forall (l:Rlist) (P:R -> R -> Prop),
(forall x:R, In x l -> exists y : R, P x y) ->
exists l' : Rlist,
Rlength l = Rlength l' /\
(forall i:nat, (i < Rlength l)%nat -> P (pos_Rl l i) (pos_Rl l' i)).
Proof.
intros; induction l as [| r l Hrecl].
exists nil; intros; split;
[ reflexivity | intros; simpl in H0; elim (lt_n_O _ H0) ].
assert (H0 : In r (cons r l)).
simpl in |- *; left; reflexivity.
assert (H1 := H _ H0);
assert (H2 : forall x:R, In x l -> exists y : R, P x y).
intros; apply H; simpl in |- *; right; assumption.
assert (H3 := Hrecl H2); elim H1; intros; elim H3; intros; exists (cons x x0);
intros; elim H5; clear H5; intros; split.
simpl in |- *; rewrite H5; reflexivity.
intros; elim (zerop i); intro.
rewrite a; simpl in |- *; assumption.
assert (H8 : i = S (pred i)).
apply S_pred with 0%nat; assumption.
rewrite H8; simpl in |- *; apply H6; simpl in H7; apply lt_S_n; rewrite <- H8;
assumption.
Qed.
Definition ordered_Rlist (l:Rlist) : Prop :=
forall i:nat, (i < pred (Rlength l))%nat -> pos_Rl l i <= pos_Rl l (S i).
Fixpoint insert (l:Rlist) (x:R) : Rlist :=
match l with
| nil => cons x nil
| cons a l' =>
match Rle_dec a x with
| left _ => cons a (insert l' x)
| right _ => cons x l
end
end.
Fixpoint cons_Rlist (l k:Rlist) : Rlist :=
match l with
| nil => k
| cons a l' => cons a (cons_Rlist l' k)
end.
Fixpoint cons_ORlist (k l:Rlist) : Rlist :=
match k with
| nil => l
| cons a k' => cons_ORlist k' (insert l a)
end.
Fixpoint app_Rlist (l:Rlist) (f:R -> R) : Rlist :=
match l with
| nil => nil
| cons a l' => cons (f a) (app_Rlist l' f)
end.
Fixpoint mid_Rlist (l:Rlist) (x:R) : Rlist :=
match l with
| nil => nil
| cons a l' => cons ((x + a) / 2) (mid_Rlist l' a)
end.
Definition Rtail (l:Rlist) : Rlist :=
match l with
| nil => nil
| cons a l' => l'
end.
Definition FF (l:Rlist) (f:R -> R) : Rlist :=
match l with
| nil => nil
| cons a l' => app_Rlist (mid_Rlist l' a) f
end.
Lemma RList_P0 :
forall (l:Rlist) (a:R),
pos_Rl (insert l a) 0 = a \/ pos_Rl (insert l a) 0 = pos_Rl l 0.
Proof.
intros; induction l as [| r l Hrecl];
[ left; reflexivity
| simpl in |- *; case (Rle_dec r a); intro;
[ right; reflexivity | left; reflexivity ] ].
Qed.
Lemma RList_P1 :
forall (l:Rlist) (a:R), ordered_Rlist l -> ordered_Rlist (insert l a).
Proof.
intros; induction l as [| r l Hrecl].
simpl in |- *; unfold ordered_Rlist in |- *; intros; simpl in H0;
elim (lt_n_O _ H0).
simpl in |- *; case (Rle_dec r a); intro.
assert (H1 : ordered_Rlist l).
unfold ordered_Rlist in |- *; unfold ordered_Rlist in H; intros;
assert (H1 : (S i < pred (Rlength (cons r l)))%nat);
[ simpl in |- *; replace (Rlength l) with (S (pred (Rlength l)));
[ apply lt_n_S; assumption
| symmetry in |- *; apply S_pred with 0%nat; apply neq_O_lt; red in |- *;
intro; rewrite <- H1 in H0; simpl in H0; elim (lt_n_O _ H0) ]
| apply (H _ H1) ].
assert (H2 := Hrecl H1); unfold ordered_Rlist in |- *; intros;
induction i as [| i Hreci].
simpl in |- *; assert (H3 := RList_P0 l a); elim H3; intro.
rewrite H4; assumption.
induction l as [| r1 l Hrecl0];
[ simpl in |- *; assumption
| rewrite H4; apply (H 0%nat); simpl in |- *; apply lt_O_Sn ].
simpl in |- *; apply H2; simpl in H0; apply lt_S_n;
replace (S (pred (Rlength (insert l a)))) with (Rlength (insert l a));
[ assumption
| apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
rewrite <- H3 in H0; elim (lt_n_O _ H0) ].
unfold ordered_Rlist in |- *; intros; induction i as [| i Hreci];
[ simpl in |- *; auto with real
| change (pos_Rl (cons r l) i <= pos_Rl (cons r l) (S i)) in |- *; apply H;
simpl in H0; simpl in |- *; apply (lt_S_n _ _ H0) ].
Qed.
Lemma RList_P2 :
forall l1 l2:Rlist, ordered_Rlist l2 -> ordered_Rlist (cons_ORlist l1 l2).
Proof.
simple induction l1;
[ intros; simpl in |- *; apply H
| intros; simpl in |- *; apply H; apply RList_P1; assumption ].
Qed.
Lemma RList_P3 :
forall (l:Rlist) (x:R),
In x l <-> (exists i : nat, x = pos_Rl l i /\ (i < Rlength l)%nat).
Proof.
intros; split; intro;
[ induction l as [| r l Hrecl] | induction l as [| r l Hrecl] ].
elim H.
elim H; intro;
[ exists 0%nat; split; [ apply H0 | simpl in |- *; apply lt_O_Sn ]
| elim (Hrecl H0); intros; elim H1; clear H1; intros; exists (S x0); split;
[ apply H1 | simpl in |- *; apply lt_n_S; assumption ] ].
elim H; intros; elim H0; intros; elim (lt_n_O _ H2).
simpl in |- *; elim H; intros; elim H0; clear H0; intros;
induction x0 as [| x0 Hrecx0];
[ left; apply H0
| right; apply Hrecl; exists x0; split;
[ apply H0 | simpl in H1; apply lt_S_n; assumption ] ].
Qed.
Lemma RList_P4 :
forall (l1:Rlist) (a:R), ordered_Rlist (cons a l1) -> ordered_Rlist l1.
Proof.
intros; unfold ordered_Rlist in |- *; intros; apply (H (S i)); simpl in |- *;
replace (Rlength l1) with (S (pred (Rlength l1)));
[ apply lt_n_S; assumption
| symmetry in |- *; apply S_pred with 0%nat; apply neq_O_lt; red in |- *;
intro; rewrite <- H1 in H0; elim (lt_n_O _ H0) ].
Qed.
Lemma RList_P5 :
forall (l:Rlist) (x:R), ordered_Rlist l -> In x l -> pos_Rl l 0 <= x.
Proof.
intros; induction l as [| r l Hrecl];
[ elim H0
| simpl in |- *; elim H0; intro;
[ rewrite H1; right; reflexivity
| apply Rle_trans with (pos_Rl l 0);
[ apply (H 0%nat); simpl in |- *; induction l as [| r0 l Hrecl0];
[ elim H1 | simpl in |- *; apply lt_O_Sn ]
| apply Hrecl; [ eapply RList_P4; apply H | assumption ] ] ] ].
Qed.
Lemma RList_P6 :
forall l:Rlist,
ordered_Rlist l <->
(forall i j:nat,
(i <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i <= pos_Rl l j).
Proof.
simple induction l; split; intro.
intros; right; reflexivity.
unfold ordered_Rlist in |- *; intros; simpl in H0; elim (lt_n_O _ H0).
intros; induction i as [| i Hreci];
[ induction j as [| j Hrecj];
[ right; reflexivity
| simpl in |- *; apply Rle_trans with (pos_Rl r0 0);
[ apply (H0 0%nat); simpl in |- *; simpl in H2; apply neq_O_lt;
red in |- *; intro; rewrite <- H3 in H2;
assert (H4 := lt_S_n _ _ H2); elim (lt_n_O _ H4)
| elim H; intros; apply H3;
[ apply RList_P4 with r; assumption
| apply le_O_n
| simpl in H2; apply lt_S_n; assumption ] ] ]
| induction j as [| j Hrecj];
[ elim (le_Sn_O _ H1)
| simpl in |- *; elim H; intros; apply H3;
[ apply RList_P4 with r; assumption
| apply le_S_n; assumption
| simpl in H2; apply lt_S_n; assumption ] ] ].
unfold ordered_Rlist in |- *; intros; apply H0;
[ apply le_n_Sn | simpl in |- *; simpl in H1; apply lt_n_S; assumption ].
Qed.
Lemma RList_P7 :
forall (l:Rlist) (x:R),
ordered_Rlist l -> In x l -> x <= pos_Rl l (pred (Rlength l)).
Proof.
intros; assert (H1 := RList_P6 l); elim H1; intros H2 _; assert (H3 := H2 H);
clear H1 H2; assert (H1 := RList_P3 l x); elim H1;
clear H1; intros; assert (H4 := H1 H0); elim H4; clear H4;
intros; elim H4; clear H4; intros; rewrite H4;
assert (H6 : Rlength l = S (pred (Rlength l))).
apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
rewrite <- H6 in H5; elim (lt_n_O _ H5).
apply H3;
[ rewrite H6 in H5; apply lt_n_Sm_le; assumption
| apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H7 in H5;
elim (lt_n_O _ H5) ].
Qed.
Lemma RList_P8 :
forall (l:Rlist) (a x:R), In x (insert l a) <-> x = a \/ In x l.
Proof.
simple induction l.
intros; split; intro; simpl in H; apply H.
intros; split; intro;
[ simpl in H0; generalize H0; case (Rle_dec r a); intros;
[ simpl in H1; elim H1; intro;
[ right; left; assumption
| elim (H a x); intros; elim (H3 H2); intro;
[ left; assumption | right; right; assumption ] ]
| simpl in H1; decompose [or] H1;
[ left; assumption
| right; left; assumption
| right; right; assumption ] ]
| simpl in |- *; case (Rle_dec r a); intro;
[ simpl in H0; decompose [or] H0;
[ right; elim (H a x); intros; apply H3; left
| left
| right; elim (H a x); intros; apply H3; right ]
| simpl in H0; decompose [or] H0; [ left | right; left | right; right ] ];
assumption ].
Qed.
Lemma RList_P9 :
forall (l1 l2:Rlist) (x:R), In x (cons_ORlist l1 l2) <-> In x l1 \/ In x l2.
Proof.
simple induction l1.
intros; split; intro;
[ simpl in H; right; assumption
| simpl in |- *; elim H; intro; [ elim H0 | assumption ] ].
intros; split.
simpl in |- *; intros; elim (H (insert l2 r) x); intros; assert (H3 := H1 H0);
elim H3; intro;
[ left; right; assumption
| elim (RList_P8 l2 r x); intros H5 _; assert (H6 := H5 H4); elim H6; intro;
[ left; left; assumption | right; assumption ] ].
intro; simpl in |- *; elim (H (insert l2 r) x); intros _ H1; apply H1;
elim H0; intro;
[ elim H2; intro;
[ right; elim (RList_P8 l2 r x); intros _ H4; apply H4; left; assumption
| left; assumption ]
| right; elim (RList_P8 l2 r x); intros _ H3; apply H3; right; assumption ].
Qed.
Lemma RList_P10 :
forall (l:Rlist) (a:R), Rlength (insert l a) = S (Rlength l).
Proof.
intros; induction l as [| r l Hrecl];
[ reflexivity
| simpl in |- *; case (Rle_dec r a); intro;
[ simpl in |- *; rewrite Hrecl; reflexivity | reflexivity ] ].
Qed.
Lemma RList_P11 :
forall l1 l2:Rlist,
Rlength (cons_ORlist l1 l2) = (Rlength l1 + Rlength l2)%nat.
Proof.
simple induction l1;
[ intro; reflexivity
| intros; simpl in |- *; rewrite (H (insert l2 r)); rewrite RList_P10;
apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR;
rewrite S_INR; ring ].
Qed.
Lemma RList_P12 :
forall (l:Rlist) (i:nat) (f:R -> R),
(i < Rlength l)%nat -> pos_Rl (app_Rlist l f) i = f (pos_Rl l i).
Proof.
simple induction l;
[ intros; elim (lt_n_O _ H)
| intros; induction i as [| i Hreci];
[ reflexivity | simpl in |- *; apply H; apply lt_S_n; apply H0 ] ].
Qed.
Lemma RList_P13 :
forall (l:Rlist) (i:nat) (a:R),
(i < pred (Rlength l))%nat ->
pos_Rl (mid_Rlist l a) (S i) = (pos_Rl l i + pos_Rl l (S i)) / 2.
Proof.
simple induction l.
intros; simpl in H; elim (lt_n_O _ H).
simple induction r0.
intros; simpl in H0; elim (lt_n_O _ H0).
intros; simpl in H1; induction i as [| i Hreci].
reflexivity.
change
(pos_Rl (mid_Rlist (cons r1 r2) r) (S i) =
(pos_Rl (cons r1 r2) i + pos_Rl (cons r1 r2) (S i)) / 2)
in |- *; apply H0; simpl in |- *; apply lt_S_n; assumption.
Qed.
Lemma RList_P14 : forall (l:Rlist) (a:R), Rlength (mid_Rlist l a) = Rlength l.
Proof.
simple induction l; intros;
[ reflexivity | simpl in |- *; rewrite (H r); reflexivity ].
Qed.
Lemma RList_P15 :
forall l1 l2:Rlist,
ordered_Rlist l1 ->
ordered_Rlist l2 ->
pos_Rl l1 0 = pos_Rl l2 0 -> pos_Rl (cons_ORlist l1 l2) 0 = pos_Rl l1 0.
Proof.
intros; apply Rle_antisym.
induction l1 as [| r l1 Hrecl1];
[ simpl in |- *; simpl in H1; right; symmetry in |- *; assumption
| elim (RList_P9 (cons r l1) l2 (pos_Rl (cons r l1) 0)); intros;
assert
(H4 :
In (pos_Rl (cons r l1) 0) (cons r l1) \/ In (pos_Rl (cons r l1) 0) l2);
[ left; left; reflexivity
| assert (H5 := H3 H4); apply RList_P5;
[ apply RList_P2; assumption | assumption ] ] ].
induction l1 as [| r l1 Hrecl1];
[ simpl in |- *; simpl in H1; right; assumption
| assert
(H2 :
In (pos_Rl (cons_ORlist (cons r l1) l2) 0) (cons_ORlist (cons r l1) l2));
[ elim
(RList_P3 (cons_ORlist (cons r l1) l2)
(pos_Rl (cons_ORlist (cons r l1) l2) 0));
intros; apply H3; exists 0%nat; split;
[ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_O_Sn ]
| elim (RList_P9 (cons r l1) l2 (pos_Rl (cons_ORlist (cons r l1) l2) 0));
intros; assert (H5 := H3 H2); elim H5; intro;
[ apply RList_P5; assumption
| rewrite H1; apply RList_P5; assumption ] ] ].
Qed.
Lemma RList_P16 :
forall l1 l2:Rlist,
ordered_Rlist l1 ->
ordered_Rlist l2 ->
pos_Rl l1 (pred (Rlength l1)) = pos_Rl l2 (pred (Rlength l2)) ->
pos_Rl (cons_ORlist l1 l2) (pred (Rlength (cons_ORlist l1 l2))) =
pos_Rl l1 (pred (Rlength l1)).
Proof.
intros; apply Rle_antisym.
induction l1 as [| r l1 Hrecl1].
simpl in |- *; simpl in H1; right; symmetry in |- *; assumption.
assert
(H2 :
In
(pos_Rl (cons_ORlist (cons r l1) l2)
(pred (Rlength (cons_ORlist (cons r l1) l2))))
(cons_ORlist (cons r l1) l2));
[ elim
(RList_P3 (cons_ORlist (cons r l1) l2)
(pos_Rl (cons_ORlist (cons r l1) l2)
(pred (Rlength (cons_ORlist (cons r l1) l2)))));
intros; apply H3; exists (pred (Rlength (cons_ORlist (cons r l1) l2)));
split; [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_n_Sn ]
| elim
(RList_P9 (cons r l1) l2
(pos_Rl (cons_ORlist (cons r l1) l2)
(pred (Rlength (cons_ORlist (cons r l1) l2)))));
intros; assert (H5 := H3 H2); elim H5; intro;
[ apply RList_P7; assumption | rewrite H1; apply RList_P7; assumption ] ].
induction l1 as [| r l1 Hrecl1].
simpl in |- *; simpl in H1; right; assumption.
elim
(RList_P9 (cons r l1) l2 (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))));
intros;
assert
(H4 :
In (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))) (cons r l1) \/
In (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))) l2);
[ left; change (In (pos_Rl (cons r l1) (Rlength l1)) (cons r l1)) in |- *;
elim (RList_P3 (cons r l1) (pos_Rl (cons r l1) (Rlength l1)));
intros; apply H5; exists (Rlength l1); split;
[ reflexivity | simpl in |- *; apply lt_n_Sn ]
| assert (H5 := H3 H4); apply RList_P7;
[ apply RList_P2; assumption
| elim
(RList_P9 (cons r l1) l2
(pos_Rl (cons r l1) (pred (Rlength (cons r l1)))));
intros; apply H7; left;
elim
(RList_P3 (cons r l1)
(pos_Rl (cons r l1) (pred (Rlength (cons r l1)))));
intros; apply H9; exists (pred (Rlength (cons r l1)));
split; [ reflexivity | simpl in |- *; apply lt_n_Sn ] ] ].
Qed.
Lemma RList_P17 :
forall (l1:Rlist) (x:R) (i:nat),
ordered_Rlist l1 ->
In x l1 ->
pos_Rl l1 i < x -> (i < pred (Rlength l1))%nat -> pos_Rl l1 (S i) <= x.
Proof.
simple induction l1.
intros; elim H0.
intros; induction i as [| i Hreci].
simpl in |- *; elim H1; intro;
[ simpl in H2; rewrite H4 in H2; elim (Rlt_irrefl _ H2)
| apply RList_P5; [ apply RList_P4 with r; assumption | assumption ] ].
simpl in |- *; simpl in H2; elim H1; intro.
rewrite H4 in H2; assert (H5 : r <= pos_Rl r0 i);
[ apply Rle_trans with (pos_Rl r0 0);
[ apply (H0 0%nat); simpl in |- *; simpl in H3; apply neq_O_lt;
red in |- *; intro; rewrite <- H5 in H3; elim (lt_n_O _ H3)
| elim (RList_P6 r0); intros; apply H5;
[ apply RList_P4 with r; assumption
| apply le_O_n
| simpl in H3; apply lt_S_n; apply lt_trans with (Rlength r0);
[ apply H3 | apply lt_n_Sn ] ] ]
| elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H5 H2)) ].
apply H; try assumption;
[ apply RList_P4 with r; assumption
| simpl in H3; apply lt_S_n;
replace (S (pred (Rlength r0))) with (Rlength r0);
[ apply H3
| apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
rewrite <- H5 in H3; elim (lt_n_O _ H3) ] ].
Qed.
Lemma RList_P18 :
forall (l:Rlist) (f:R -> R), Rlength (app_Rlist l f) = Rlength l.
Proof.
simple induction l; intros;
[ reflexivity | simpl in |- *; rewrite H; reflexivity ].
Qed.
Lemma RList_P19 :
forall l:Rlist,
l <> nil -> exists r : R, (exists r0 : Rlist, l = cons r r0).
Proof.
intros; induction l as [| r l Hrecl];
[ elim H; reflexivity | exists r; exists l; reflexivity ].
Qed.
Lemma RList_P20 :
forall l:Rlist,
(2 <= Rlength l)%nat ->
exists r : R,
(exists r1 : R, (exists l' : Rlist, l = cons r (cons r1 l'))).
Proof.
intros; induction l as [| r l Hrecl];
[ simpl in H; elim (le_Sn_O _ H)
| induction l as [| r0 l Hrecl0];
[ simpl in H; elim (le_Sn_O _ (le_S_n _ _ H))
| exists r; exists r0; exists l; reflexivity ] ].
Qed.
Lemma RList_P21 : forall l l':Rlist, l = l' -> Rtail l = Rtail l'.
Proof.
intros; rewrite H; reflexivity.
Qed.
Lemma RList_P22 :
forall l1 l2:Rlist, l1 <> nil -> pos_Rl (cons_Rlist l1 l2) 0 = pos_Rl l1 0.
Proof.
simple induction l1; [ intros; elim H; reflexivity | intros; reflexivity ].
Qed.
Lemma RList_P23 :
forall l1 l2:Rlist,
Rlength (cons_Rlist l1 l2) = (Rlength l1 + Rlength l2)%nat.
Proof.
simple induction l1;
[ intro; reflexivity | intros; simpl in |- *; rewrite H; reflexivity ].
Qed.
Lemma RList_P24 :
forall l1 l2:Rlist,
l2 <> nil ->
pos_Rl (cons_Rlist l1 l2) (pred (Rlength (cons_Rlist l1 l2))) =
pos_Rl l2 (pred (Rlength l2)).
Proof.
simple induction l1.
intros; reflexivity.
intros; rewrite <- (H l2 H0); induction l2 as [| r1 l2 Hrecl2].
elim H0; reflexivity.
do 2 rewrite RList_P23;
replace (Rlength (cons r r0) + Rlength (cons r1 l2))%nat with
(S (S (Rlength r0 + Rlength l2)));
[ replace (Rlength r0 + Rlength (cons r1 l2))%nat with
(S (Rlength r0 + Rlength l2));
[ reflexivity
| simpl in |- *; apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR;
rewrite S_INR; ring ]
| simpl in |- *; apply INR_eq; do 3 rewrite S_INR; do 2 rewrite plus_INR;
rewrite S_INR; ring ].
Qed.
Lemma RList_P25 :
forall l1 l2:Rlist,
ordered_Rlist l1 ->
ordered_Rlist l2 ->
pos_Rl l1 (pred (Rlength l1)) <= pos_Rl l2 0 ->
ordered_Rlist (cons_Rlist l1 l2).
Proof.
simple induction l1.
intros; simpl in |- *; assumption.
simple induction r0.
intros; simpl in |- *; simpl in H2; unfold ordered_Rlist in |- *; intros;
simpl in H3.
induction i as [| i Hreci].
simpl in |- *; assumption.
change (pos_Rl l2 i <= pos_Rl l2 (S i)) in |- *; apply (H1 i); apply lt_S_n;
replace (S (pred (Rlength l2))) with (Rlength l2);
[ assumption
| apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
rewrite <- H4 in H3; elim (lt_n_O _ H3) ].
intros; clear H; assert (H : ordered_Rlist (cons_Rlist (cons r1 r2) l2)).
apply H0; try assumption.
apply RList_P4 with r; assumption.
unfold ordered_Rlist in |- *; intros; simpl in H4;
induction i as [| i Hreci].
simpl in |- *; apply (H1 0%nat); simpl in |- *; apply lt_O_Sn.
change
(pos_Rl (cons_Rlist (cons r1 r2) l2) i <=
pos_Rl (cons_Rlist (cons r1 r2) l2) (S i)) in |- *;
apply (H i); simpl in |- *; apply lt_S_n; assumption.
Qed.
Lemma RList_P26 :
forall (l1 l2:Rlist) (i:nat),
(i < Rlength l1)%nat -> pos_Rl (cons_Rlist l1 l2) i = pos_Rl l1 i.
Proof.
simple induction l1.
intros; elim (lt_n_O _ H).
intros; induction i as [| i Hreci].
apply RList_P22; discriminate.
apply (H l2 i); simpl in H0; apply lt_S_n; assumption.
Qed.
Lemma RList_P27 :
forall l1 l2 l3:Rlist,
cons_Rlist l1 (cons_Rlist l2 l3) = cons_Rlist (cons_Rlist l1 l2) l3.
Proof.
simple induction l1; intros;
[ reflexivity | simpl in |- *; rewrite (H l2 l3); reflexivity ].
Qed.
Lemma RList_P28 : forall l:Rlist, cons_Rlist l nil = l.
Proof.
simple induction l;
[ reflexivity | intros; simpl in |- *; rewrite H; reflexivity ].
Qed.
Lemma RList_P29 :
forall (l2 l1:Rlist) (i:nat),
(Rlength l1 <= i)%nat ->
(i < Rlength (cons_Rlist l1 l2))%nat ->
pos_Rl (cons_Rlist l1 l2) i = pos_Rl l2 (i - Rlength l1).
Proof.
simple induction l2.
intros; rewrite RList_P28 in H0; elim (lt_irrefl _ (le_lt_trans _ _ _ H H0)).
intros;
replace (cons_Rlist l1 (cons r r0)) with
(cons_Rlist (cons_Rlist l1 (cons r nil)) r0).
inversion H0.
rewrite <- minus_n_n; simpl in |- *; rewrite RList_P26.
clear l2 r0 H i H0 H1 H2; induction l1 as [| r0 l1 Hrecl1].
reflexivity.
simpl in |- *; assumption.
rewrite RList_P23; rewrite plus_comm; simpl in |- *; apply lt_n_Sn.
replace (S m - Rlength l1)%nat with (S (S m - S (Rlength l1))).
rewrite H3; simpl in |- *;
replace (S (Rlength l1)) with (Rlength (cons_Rlist l1 (cons r nil))).
apply (H (cons_Rlist l1 (cons r nil)) i).
rewrite RList_P23; rewrite plus_comm; simpl in |- *; rewrite <- H3;
apply le_n_S; assumption.
repeat rewrite RList_P23; simpl in |- *; rewrite RList_P23 in H1;
rewrite plus_comm in H1; simpl in H1; rewrite (plus_comm (Rlength l1));
simpl in |- *; rewrite plus_comm; apply H1.
rewrite RList_P23; rewrite plus_comm; reflexivity.
change (S (m - Rlength l1) = (S m - Rlength l1)%nat) in |- *;
apply minus_Sn_m; assumption.
replace (cons r r0) with (cons_Rlist (cons r nil) r0);
[ symmetry in |- *; apply RList_P27 | reflexivity ].
Qed.
|