blob: 3f76e77afd95610b753da8576659c2bb94c42a4e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: LegacyRfield.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
Require Export Raxioms.
Require Export LegacyField.
Import LegacyRing_theory.
Section LegacyRfield.
Open Scope R_scope.
Lemma RLegacyTheory : Ring_Theory Rplus Rmult 1 0 Ropp (fun x y:R => false).
split.
exact Rplus_comm.
symmetry in |- *; apply Rplus_assoc.
exact Rmult_comm.
symmetry in |- *; apply Rmult_assoc.
intro; apply Rplus_0_l.
intro; apply Rmult_1_l.
exact Rplus_opp_r.
intros.
rewrite Rmult_comm.
rewrite (Rmult_comm n p).
rewrite (Rmult_comm m p).
apply Rmult_plus_distr_l.
intros; contradiction.
Defined.
End LegacyRfield.
Add Legacy Field
R Rplus Rmult 1%R 0%R Ropp (fun x y:R => false) Rinv RLegacyTheory Rinv_l
with minus := Rminus div := Rdiv.
|