1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import Rbase.
Require Import Rfunctions.
Require Import PartSum.
Local Open Scope R_scope.
Definition C (n p:nat) : R :=
INR (fact n) / (INR (fact p) * INR (fact (n - p))).
Lemma pascal_step1 : forall n i:nat, (i <= n)%nat -> C n i = C n (n - i).
Proof.
intros; unfold C; replace (n - (n - i))%nat with i.
rewrite Rmult_comm.
reflexivity.
apply plus_minus; rewrite plus_comm; apply le_plus_minus; assumption.
Qed.
Lemma pascal_step2 :
forall n i:nat,
(i <= n)%nat -> C (S n) i = INR (S n) / INR (S n - i) * C n i.
Proof.
intros; unfold C; replace (S n - i)%nat with (S (n - i)).
cut (forall n:nat, fact (S n) = (S n * fact n)%nat).
intro; repeat rewrite H0.
unfold Rdiv; repeat rewrite mult_INR; repeat rewrite Rinv_mult_distr.
ring.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
apply not_O_INR; discriminate.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
apply prod_neq_R0.
apply not_O_INR; discriminate.
apply INR_fact_neq_0.
intro; reflexivity.
apply minus_Sn_m; assumption.
Qed.
Lemma pascal_step3 :
forall n i:nat, (i < n)%nat -> C n (S i) = INR (n - i) / INR (S i) * C n i.
Proof.
intros; unfold C.
cut (forall n:nat, fact (S n) = (S n * fact n)%nat).
intro.
cut ((n - i)%nat = S (n - S i)).
intro.
pattern (n - i)%nat at 2; rewrite H1.
repeat rewrite H0; unfold Rdiv; repeat rewrite mult_INR;
repeat rewrite Rinv_mult_distr.
rewrite <- H1; rewrite (Rmult_comm (/ INR (n - i)));
repeat rewrite Rmult_assoc; rewrite (Rmult_comm (INR (n - i)));
repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
ring.
apply not_O_INR; apply minus_neq_O; assumption.
apply not_O_INR; discriminate.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
apply prod_neq_R0; [ apply not_O_INR; discriminate | apply INR_fact_neq_0 ].
apply not_O_INR; discriminate.
apply INR_fact_neq_0.
apply prod_neq_R0; [ apply not_O_INR; discriminate | apply INR_fact_neq_0 ].
apply INR_fact_neq_0.
rewrite minus_Sn_m.
simpl; reflexivity.
apply lt_le_S; assumption.
intro; reflexivity.
Qed.
(**********)
Lemma pascal :
forall n i:nat, (i < n)%nat -> C n i + C n (S i) = C (S n) (S i).
Proof.
intros.
rewrite pascal_step3; [ idtac | assumption ].
replace (C n i + INR (n - i) / INR (S i) * C n i) with
(C n i * (1 + INR (n - i) / INR (S i))); [ idtac | ring ].
replace (1 + INR (n - i) / INR (S i)) with (INR (S n) / INR (S i)).
rewrite pascal_step1.
rewrite Rmult_comm; replace (S i) with (S n - (n - i))%nat.
rewrite <- pascal_step2.
apply pascal_step1.
apply le_trans with n.
apply le_minusni_n.
apply lt_le_weak; assumption.
apply le_n_Sn.
apply le_minusni_n.
apply lt_le_weak; assumption.
rewrite <- minus_Sn_m.
cut ((n - (n - i))%nat = i).
intro; rewrite H0; reflexivity.
symmetry ; apply plus_minus.
rewrite plus_comm; rewrite le_plus_minus_r.
reflexivity.
apply lt_le_weak; assumption.
apply le_minusni_n; apply lt_le_weak; assumption.
apply lt_le_weak; assumption.
unfold Rdiv.
repeat rewrite S_INR.
rewrite minus_INR.
cut (INR i + 1 <> 0).
intro.
apply Rmult_eq_reg_l with (INR i + 1); [ idtac | assumption ].
rewrite Rmult_plus_distr_l.
rewrite Rmult_1_r.
do 2 rewrite (Rmult_comm (INR i + 1)).
repeat rewrite Rmult_assoc.
rewrite <- Rinv_l_sym; [ idtac | assumption ].
ring.
rewrite <- S_INR.
apply not_O_INR; discriminate.
apply lt_le_weak; assumption.
Qed.
(*********************)
(*********************)
Lemma binomial :
forall (x y:R) (n:nat),
(x + y) ^ n = sum_f_R0 (fun i:nat => C n i * x ^ i * y ^ (n - i)) n.
Proof.
intros; induction n as [| n Hrecn].
unfold C; simpl; unfold Rdiv;
repeat rewrite Rmult_1_r; rewrite Rinv_1; ring.
pattern (S n) at 1; replace (S n) with (n + 1)%nat; [ idtac | ring ].
rewrite pow_add; rewrite Hrecn.
replace ((x + y) ^ 1) with (x + y); [ idtac | simpl; ring ].
rewrite tech5.
cut (forall p:nat, C p p = 1).
cut (forall p:nat, C p 0 = 1).
intros; rewrite H0; rewrite <- minus_n_n; rewrite Rmult_1_l.
replace (y ^ 0) with 1; [ rewrite Rmult_1_r | simpl; reflexivity ].
induction n as [| n Hrecn0].
simpl; do 2 rewrite H; ring.
(* N >= 1 *)
set (N := S n).
rewrite Rmult_plus_distr_l.
replace (sum_f_R0 (fun i:nat => C N i * x ^ i * y ^ (N - i)) N * x) with
(sum_f_R0 (fun i:nat => C N i * x ^ S i * y ^ (N - i)) N).
replace (sum_f_R0 (fun i:nat => C N i * x ^ i * y ^ (N - i)) N * y) with
(sum_f_R0 (fun i:nat => C N i * x ^ i * y ^ (S N - i)) N).
rewrite (decomp_sum (fun i:nat => C (S N) i * x ^ i * y ^ (S N - i)) N).
rewrite H; replace (x ^ 0) with 1; [ idtac | reflexivity ].
do 2 rewrite Rmult_1_l.
replace (S N - 0)%nat with (S N); [ idtac | reflexivity ].
set (An := fun i:nat => C N i * x ^ S i * y ^ (N - i)).
set (Bn := fun i:nat => C N (S i) * x ^ S i * y ^ (N - i)).
replace (pred N) with n.
replace (sum_f_R0 (fun i:nat => C (S N) (S i) * x ^ S i * y ^ (S N - S i)) n)
with (sum_f_R0 (fun i:nat => An i + Bn i) n).
rewrite plus_sum.
replace (x ^ S N) with (An (S n)).
rewrite (Rplus_comm (sum_f_R0 An n)).
repeat rewrite Rplus_assoc.
rewrite <- tech5.
fold N.
set (Cn := fun i:nat => C N i * x ^ i * y ^ (S N - i)).
cut (forall i:nat, (i < N)%nat -> Cn (S i) = Bn i).
intro; replace (sum_f_R0 Bn n) with (sum_f_R0 (fun i:nat => Cn (S i)) n).
replace (y ^ S N) with (Cn 0%nat).
rewrite <- Rplus_assoc; rewrite (decomp_sum Cn N).
replace (pred N) with n.
ring.
unfold N; simpl; reflexivity.
unfold N; apply lt_O_Sn.
unfold Cn; rewrite H; simpl; ring.
apply sum_eq.
intros; apply H1.
unfold N; apply le_lt_trans with n; [ assumption | apply lt_n_Sn ].
intros; unfold Bn, Cn.
replace (S N - S i)%nat with (N - i)%nat; reflexivity.
unfold An; fold N; rewrite <- minus_n_n; rewrite H0;
simpl; ring.
apply sum_eq.
intros; unfold An, Bn; replace (S N - S i)%nat with (N - i)%nat;
[ idtac | reflexivity ].
rewrite <- pascal;
[ ring
| apply le_lt_trans with n; [ assumption | unfold N; apply lt_n_Sn ] ].
unfold N; reflexivity.
unfold N; apply lt_O_Sn.
rewrite <- (Rmult_comm y); rewrite scal_sum; apply sum_eq.
intros; replace (S N - i)%nat with (S (N - i)).
replace (S (N - i)) with (N - i + 1)%nat; [ idtac | ring ].
rewrite pow_add; replace (y ^ 1) with y; [ idtac | simpl; ring ];
ring.
apply minus_Sn_m; assumption.
rewrite <- (Rmult_comm x); rewrite scal_sum; apply sum_eq.
intros; replace (S i) with (i + 1)%nat; [ idtac | ring ]; rewrite pow_add;
replace (x ^ 1) with x; [ idtac | simpl; ring ];
ring.
intro; unfold C.
replace (INR (fact 0)) with 1; [ idtac | reflexivity ].
replace (p - 0)%nat with p; [ idtac | apply minus_n_O ].
rewrite Rmult_1_l; unfold Rdiv; rewrite <- Rinv_r_sym;
[ reflexivity | apply INR_fact_neq_0 ].
intro; unfold C.
replace (p - p)%nat with 0%nat; [ idtac | apply minus_n_n ].
replace (INR (fact 0)) with 1; [ idtac | reflexivity ].
rewrite Rmult_1_r; unfold Rdiv; rewrite <- Rinv_r_sym;
[ reflexivity | apply INR_fact_neq_0 ].
Qed.
|