1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import Rbase.
Require Import Rbasic_fun.
Require Import Even.
Require Import Div2.
Require Import ArithRing.
Open Local Scope Z_scope.
Open Local Scope R_scope.
Lemma minus_neq_O : forall n i:nat, (i < n)%nat -> (n - i)%nat <> 0%nat.
Proof.
intros; red in |- *; intro.
cut (forall n m:nat, (m <= n)%nat -> (n - m)%nat = 0%nat -> n = m).
intro; assert (H2 := H1 _ _ (lt_le_weak _ _ H) H0); rewrite H2 in H;
elim (lt_irrefl _ H).
set (R := fun n m:nat => (m <= n)%nat -> (n - m)%nat = 0%nat -> n = m).
cut
((forall n m:nat, R n m) ->
forall n0 m:nat, (m <= n0)%nat -> (n0 - m)%nat = 0%nat -> n0 = m).
intro; apply H1.
apply nat_double_ind.
unfold R in |- *; intros; inversion H2; reflexivity.
unfold R in |- *; intros; simpl in H3; assumption.
unfold R in |- *; intros; simpl in H4; assert (H5 := le_S_n _ _ H3);
assert (H6 := H2 H5 H4); rewrite H6; reflexivity.
unfold R in |- *; intros; apply H1; assumption.
Qed.
Lemma le_minusni_n : forall n i:nat, (i <= n)%nat -> (n - i <= n)%nat.
Proof.
set (R := fun m n:nat => (n <= m)%nat -> (m - n <= m)%nat).
cut
((forall m n:nat, R m n) -> forall n i:nat, (i <= n)%nat -> (n - i <= n)%nat).
intro; apply H.
apply nat_double_ind.
unfold R in |- *; intros; simpl in |- *; apply le_n.
unfold R in |- *; intros; simpl in |- *; apply le_n.
unfold R in |- *; intros; simpl in |- *; apply le_trans with n.
apply H0; apply le_S_n; assumption.
apply le_n_Sn.
unfold R in |- *; intros; apply H; assumption.
Qed.
Lemma lt_minus_O_lt : forall m n:nat, (m < n)%nat -> (0 < n - m)%nat.
Proof.
intros n m; pattern n, m in |- *; apply nat_double_ind;
[ intros; rewrite <- minus_n_O; assumption
| intros; elim (lt_n_O _ H)
| intros; simpl in |- *; apply H; apply lt_S_n; assumption ].
Qed.
Lemma even_odd_cor :
forall n:nat, exists p : nat, n = (2 * p)%nat \/ n = S (2 * p).
Proof.
intro.
assert (H := even_or_odd n).
exists (div2 n).
assert (H0 := even_odd_double n).
elim H0; intros.
elim H1; intros H3 _.
elim H2; intros H4 _.
replace (2 * div2 n)%nat with (double (div2 n)).
elim H; intro.
left.
apply H3; assumption.
right.
apply H4; assumption.
unfold double in |- *;ring.
Qed.
(* 2m <= 2n => m<=n *)
Lemma le_double : forall m n:nat, (2 * m <= 2 * n)%nat -> (m <= n)%nat.
Proof.
intros; apply INR_le.
assert (H1 := le_INR _ _ H).
do 2 rewrite mult_INR in H1.
apply Rmult_le_reg_l with (INR 2).
replace (INR 2) with 2; [ prove_sup0 | reflexivity ].
assumption.
Qed.
(** Here, we have the euclidian division *)
(** This lemma is used in the proof of sin_eq_0 : (sin x)=0<->x=kPI *)
Lemma euclidian_division :
forall x y:R,
y <> 0 ->
exists k : Z, (exists r : R, x = IZR k * y + r /\ 0 <= r < Rabs y).
Proof.
intros.
set
(k0 :=
match Rcase_abs y with
| left _ => (1 - up (x / - y))%Z
| right _ => (up (x / y) - 1)%Z
end).
exists k0.
exists (x - IZR k0 * y).
split.
ring.
unfold k0 in |- *; case (Rcase_abs y); intro.
assert (H0 := archimed (x / - y)); rewrite <- Z_R_minus; simpl in |- *;
unfold Rminus in |- *.
replace (- ((1 + - IZR (up (x / - y))) * y)) with
((IZR (up (x / - y)) - 1) * y); [ idtac | ring ].
split.
apply Rmult_le_reg_l with (/ - y).
apply Rinv_0_lt_compat; apply Ropp_0_gt_lt_contravar; exact r.
rewrite Rmult_0_r; rewrite (Rmult_comm (/ - y)); rewrite Rmult_plus_distr_r;
rewrite <- Ropp_inv_permute; [ idtac | assumption ].
rewrite Rmult_assoc; repeat rewrite Ropp_mult_distr_r_reverse;
rewrite <- Rinv_r_sym; [ rewrite Rmult_1_r | assumption ].
apply Rplus_le_reg_l with (IZR (up (x / - y)) - x / - y).
rewrite Rplus_0_r; unfold Rdiv in |- *; pattern (/ - y) at 4 in |- *;
rewrite <- Ropp_inv_permute; [ idtac | assumption ].
replace
(IZR (up (x * / - y)) - x * - / y +
(- (x * / y) + - (IZR (up (x * / - y)) - 1))) with 1;
[ idtac | ring ].
elim H0; intros _ H1; unfold Rdiv in H1; exact H1.
rewrite (Rabs_left _ r); apply Rmult_lt_reg_l with (/ - y).
apply Rinv_0_lt_compat; apply Ropp_0_gt_lt_contravar; exact r.
rewrite <- Rinv_l_sym.
rewrite (Rmult_comm (/ - y)); rewrite Rmult_plus_distr_r;
rewrite <- Ropp_inv_permute; [ idtac | assumption ].
rewrite Rmult_assoc; repeat rewrite Ropp_mult_distr_r_reverse;
rewrite <- Rinv_r_sym; [ rewrite Rmult_1_r | assumption ];
apply Rplus_lt_reg_r with (IZR (up (x / - y)) - 1).
replace (IZR (up (x / - y)) - 1 + 1) with (IZR (up (x / - y)));
[ idtac | ring ].
replace (IZR (up (x / - y)) - 1 + (- (x * / y) + - (IZR (up (x / - y)) - 1)))
with (- (x * / y)); [ idtac | ring ].
rewrite <- Ropp_mult_distr_r_reverse; rewrite (Ropp_inv_permute _ H); elim H0;
unfold Rdiv in |- *; intros H1 _; exact H1.
apply Ropp_neq_0_compat; assumption.
assert (H0 := archimed (x / y)); rewrite <- Z_R_minus; simpl in |- *;
cut (0 < y).
intro; unfold Rminus in |- *;
replace (- ((IZR (up (x / y)) + -1) * y)) with ((1 - IZR (up (x / y))) * y);
[ idtac | ring ].
split.
apply Rmult_le_reg_l with (/ y).
apply Rinv_0_lt_compat; assumption.
rewrite Rmult_0_r; rewrite (Rmult_comm (/ y)); rewrite Rmult_plus_distr_r;
rewrite Rmult_assoc; rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_r | assumption ];
apply Rplus_le_reg_l with (IZR (up (x / y)) - x / y);
rewrite Rplus_0_r; unfold Rdiv in |- *;
replace
(IZR (up (x * / y)) - x * / y + (x * / y + (1 - IZR (up (x * / y))))) with
1; [ idtac | ring ]; elim H0; intros _ H2; unfold Rdiv in H2;
exact H2.
rewrite (Rabs_right _ r); apply Rmult_lt_reg_l with (/ y).
apply Rinv_0_lt_compat; assumption.
rewrite <- (Rinv_l_sym _ H); rewrite (Rmult_comm (/ y));
rewrite Rmult_plus_distr_r; rewrite Rmult_assoc; rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_r | assumption ];
apply Rplus_lt_reg_r with (IZR (up (x / y)) - 1);
replace (IZR (up (x / y)) - 1 + 1) with (IZR (up (x / y)));
[ idtac | ring ];
replace (IZR (up (x / y)) - 1 + (x * / y + (1 - IZR (up (x / y))))) with
(x * / y); [ idtac | ring ]; elim H0; unfold Rdiv in |- *;
intros H2 _; exact H2.
case (total_order_T 0 y); intro.
elim s; intro.
assumption.
elim H; symmetry in |- *; exact b.
assert (H1 := Rge_le _ _ r); elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H1 r0)).
Qed.
Lemma tech8 : forall n i:nat, (n <= S n + i)%nat.
Proof.
intros; induction i as [| i Hreci].
replace (S n + 0)%nat with (S n); [ apply le_n_Sn | ring ].
replace (S n + S i)%nat with (S (S n + i)).
apply le_S; assumption.
apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR; do 2 rewrite S_INR; ring.
Qed.
|