summaryrefslogtreecommitdiff
path: root/theories/QArith/Qreduction.v
blob: 9c522f099b26cbde8312b98045446eb008f867c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Qreduction.v 10739 2008-04-01 14:45:20Z herbelin $ i*)

(** Normalisation functions for rational numbers. *)

Require Export QArith_base.
Require Import Znumtheory.

(** First, a function that (tries to) build a positive back from a Z. *)

Definition Z2P (z : Z) :=
  match z with
  | Z0 => 1%positive
  | Zpos p => p
  | Zneg p => p
  end.

Lemma Z2P_correct : forall z : Z, (0 < z)%Z -> Zpos (Z2P z) = z.
Proof.
 simple destruct z; simpl in |- *; auto; intros; discriminate.
Qed.

Lemma Z2P_correct2 : forall z : Z, 0%Z <> z -> Zpos (Z2P z) = Zabs z.
Proof.
 simple destruct z; simpl in |- *; auto; intros; elim H; auto.
Qed.

(** Simplification of fractions using [Zgcd].
  This version can compute within Coq. *)

Definition Qred (q:Q) := 
  let (q1,q2) := q in 
  let (r1,r2) := snd (Zggcd q1 ('q2)) 
  in r1#(Z2P r2).

Lemma Qred_correct : forall q, (Qred q) == q.
Proof.
  unfold Qred, Qeq; intros (n,d); simpl.
  generalize (Zggcd_gcd n ('d)) (Zgcd_is_pos n ('d)) 
    (Zgcd_is_gcd n ('d)) (Zggcd_correct_divisors n ('d)).
  destruct (Zggcd n (Zpos d)) as (g,(nn,dd)); simpl.
  Open Scope Z_scope.
  intuition.
  rewrite <- H in H0,H1; clear H.
  rewrite H3; rewrite H4.
  assert (0 <> g).
  intro; subst g; discriminate.
  
  assert (0 < dd).
  apply Zmult_gt_0_lt_0_reg_r with g.
  omega.
  rewrite Zmult_comm.
  rewrite <- H4; compute; auto.
  rewrite Z2P_correct; auto.
  ring.
  Close Scope Z_scope.
Qed.

Lemma Qred_complete : forall p q,  p==q -> Qred p = Qred q.
Proof.
  intros (a,b) (c,d).
  unfold Qred, Qeq in *; simpl in *.
  Open Scope Z_scope.
  generalize (Zggcd_gcd a ('b)) (Zgcd_is_gcd a ('b)) 
    (Zgcd_is_pos a ('b)) (Zggcd_correct_divisors a ('b)).
  destruct (Zggcd a (Zpos b)) as (g,(aa,bb)).
  generalize (Zggcd_gcd c ('d)) (Zgcd_is_gcd c ('d)) 
    (Zgcd_is_pos c ('d)) (Zggcd_correct_divisors c ('d)).
  destruct (Zggcd c (Zpos d)) as (g',(cc,dd)).
  simpl.
  intro H; rewrite <- H; clear H.
  intros Hg'1 Hg'2 (Hg'3,Hg'4).
  intro H; rewrite <- H; clear H.
  intros Hg1 Hg2 (Hg3,Hg4).
  intros.
  assert (g <> 0).
  intro; subst g; discriminate.
  assert (g' <> 0).
  intro; subst g'; discriminate.
  elim (rel_prime_cross_prod aa bb cc dd).
  congruence.
  unfold rel_prime in |- *.
  (*rel_prime*)
  constructor.
  exists aa; auto with zarith.
  exists bb; auto with zarith.
  intros.
  inversion Hg1.
  destruct (H6 (g*x)).
  rewrite Hg3.
  destruct H2 as (xa,Hxa); exists xa; rewrite Hxa; ring.
  rewrite Hg4.
  destruct H3 as (xb,Hxb); exists xb; rewrite Hxb; ring.
  exists q.
  apply Zmult_reg_l with g; auto.
  pattern g at 1; rewrite H7; ring.
  (* /rel_prime *)
  unfold rel_prime in |- *.
  (* rel_prime *)
  constructor.
  exists cc; auto with zarith.
  exists dd; auto with zarith.
  intros.
  inversion Hg'1.
  destruct (H6 (g'*x)).
  rewrite Hg'3.
  destruct H2 as (xc,Hxc); exists xc; rewrite Hxc; ring.
  rewrite Hg'4.
  destruct H3 as (xd,Hxd); exists xd; rewrite Hxd; ring.
  exists q.
  apply Zmult_reg_l with g'; auto.
  pattern g' at 1; rewrite H7; ring.
    (* /rel_prime *)
  assert (0<bb); [|auto with zarith].
  apply Zmult_gt_0_lt_0_reg_r with g.
  omega.
  rewrite Zmult_comm.
  rewrite <- Hg4; compute; auto.
  assert (0<dd); [|auto with zarith].
  apply Zmult_gt_0_lt_0_reg_r with g'.
  omega.
  rewrite Zmult_comm.
  rewrite <- Hg'4; compute; auto.
  apply Zmult_reg_l with (g'*g).
  intro H2; elim (Zmult_integral _ _ H2); auto.
  replace (g'*g*(aa*dd)) with ((g*aa)*(g'*dd)); [|ring].
  replace (g'*g*(bb*cc)) with ((g'*cc)*(g*bb)); [|ring].
  rewrite <- Hg3; rewrite <- Hg4; rewrite <- Hg'3; rewrite <- Hg'4; auto.
  Close Scope Z_scope.
Qed.

Add Morphism Qred : Qred_comp. 
Proof.
  intros q q' H.
  rewrite (Qred_correct q); auto.
  rewrite (Qred_correct q'); auto.
Qed.

Definition Qplus' (p q : Q) := Qred (Qplus p q).
Definition Qmult' (p q : Q) := Qred (Qmult p q). 
Definition Qminus' x y := Qred (Qminus x y).

Lemma Qplus'_correct : forall p q : Q, (Qplus' p q)==(Qplus p q).
Proof.
  intros; unfold Qplus' in |- *; apply Qred_correct; auto.
Qed.

Lemma Qmult'_correct : forall p q : Q, (Qmult' p q)==(Qmult p q).
Proof.
  intros; unfold Qmult' in |- *; apply Qred_correct; auto.
Qed.

Lemma Qminus'_correct : forall p q : Q, (Qminus' p q)==(Qminus p q).
Proof.
  intros; unfold Qminus' in |- *; apply Qred_correct; auto.
Qed.

Add Morphism Qplus' : Qplus'_comp.
Proof.
  intros; unfold Qplus' in |- *.
  rewrite H; rewrite H0; auto with qarith.
Qed.

Add Morphism Qmult' : Qmult'_comp.
  intros; unfold Qmult' in |- *.
  rewrite H; rewrite H0; auto with qarith.
Qed.

Add Morphism Qminus' : Qminus'_comp.
  intros; unfold Qminus' in |- *.
  rewrite H; rewrite H0; auto with qarith.
Qed.

Lemma Qred_opp: forall q, Qred (-q) = - (Qred q).
Proof.
  intros (x, y); unfold Qred; simpl.
  rewrite Zggcd_opp; case Zggcd; intros p1 (p2, p3); simpl.
  unfold Qopp; auto.
Qed.

Theorem Qred_compare: forall x y,
  Qcompare x y = Qcompare (Qred x) (Qred y).
Proof.
  intros x y; apply Qcompare_comp; apply Qeq_sym; apply Qred_correct.
Qed.