blob: 01c6ab6789b4d95e5c1592fd3e2fc766ce50b599 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import QArith_base Orders QOrderedType GenericMinMax.
(** * Maximum and Minimum of two rational numbers *)
Local Open Scope Q_scope.
(** [Qmin] and [Qmax] are obtained the usual way from [Qcompare]. *)
Definition Qmax := gmax Qcompare.
Definition Qmin := gmin Qcompare.
Module QHasMinMax <: HasMinMax Q_as_OT.
Module QMM := GenericMinMax Q_as_OT.
Definition max := Qmax.
Definition min := Qmin.
Definition max_l := QMM.max_l.
Definition max_r := QMM.max_r.
Definition min_l := QMM.min_l.
Definition min_r := QMM.min_r.
End QHasMinMax.
Module Q.
(** We obtain hence all the generic properties of max and min. *)
Include MinMaxProperties Q_as_OT QHasMinMax.
(** * Properties specific to the [Q] domain *)
(** Compatibilities (consequences of monotonicity) *)
Lemma plus_max_distr_l : forall n m p, Qmax (p + n) (p + m) == p + Qmax n m.
Proof.
intros. apply max_monotone.
intros x x' Hx; rewrite Hx; auto with qarith.
intros x x' Hx. apply Qplus_le_compat; q_order.
Qed.
Lemma plus_max_distr_r : forall n m p, Qmax (n + p) (m + p) == Qmax n m + p.
Proof.
intros. rewrite (Qplus_comm n p), (Qplus_comm m p), (Qplus_comm _ p).
apply plus_max_distr_l.
Qed.
Lemma plus_min_distr_l : forall n m p, Qmin (p + n) (p + m) == p + Qmin n m.
Proof.
intros. apply min_monotone.
intros x x' Hx; rewrite Hx; auto with qarith.
intros x x' Hx. apply Qplus_le_compat; q_order.
Qed.
Lemma plus_min_distr_r : forall n m p, Qmin (n + p) (m + p) == Qmin n m + p.
Proof.
intros. rewrite (Qplus_comm n p), (Qplus_comm m p), (Qplus_comm _ p).
apply plus_min_distr_l.
Qed.
End Q.
|