summaryrefslogtreecommitdiff
path: root/theories/QArith/QArith_base.v
blob: 1d56b747df6eccfc6b7d3ac219be630d35c968de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: QArith_base.v 8883 2006-05-31 21:56:37Z letouzey $ i*)

Require Export ZArith.
Require Export ZArithRing.
Require Export Setoid.

(** * Definition of [Q] and basic properties *)

(** Rationals are pairs of [Z] and [positive] numbers. *)

Record Q : Set := Qmake {Qnum : Z; Qden : positive}.

Delimit Scope Q_scope with Q.
Bind Scope Q_scope with Q.
Arguments Scope Qmake [Z_scope positive_scope].
Open Scope Q_scope.
Ltac simpl_mult := repeat rewrite Zpos_mult_morphism.

(** [a#b] denotes the fraction [a] over [b]. *)

Notation "a # b" := (Qmake a b) (at level 55, no associativity) : Q_scope.

Definition inject_Z (x : Z) := Qmake x 1. 
Arguments Scope inject_Z [Z_scope].

Notation " 'QDen'  p " := (Zpos (Qden p)) (at level 20, no associativity) : Q_scope.
Notation " 0 " := (0#1) : Q_scope.
Notation " 1 " := (1#1) : Q_scope.

Definition Qeq (p q : Q) := (Qnum p * QDen q)%Z = (Qnum q * QDen p)%Z.
Definition Qle (x y : Q) := (Qnum x * QDen y <= Qnum y * QDen x)%Z.
Definition Qlt (x y : Q) := (Qnum x * QDen y < Qnum y * QDen x)%Z.
Notation Qgt := (fun x y : Q => Qlt y x).
Notation Qge := (fun x y : Q => Qle y x).

Infix "==" := Qeq (at level 70, no associativity) : Q_scope. 
Infix "<" := Qlt : Q_scope.
Infix "<=" := Qle : Q_scope.
Infix ">" := Qgt : Q_scope. 
Infix ">=" := Qge : Q_scope. 
Notation "x <= y <= z" := (x<=y/\y<=z) : Q_scope.

Hint Unfold Qeq Qle Qlt: qarith.
Hint Extern 5 (?X1 <> ?X2) => intro; discriminate: qarith.

(** Properties of equality. *)

Theorem Qeq_refl : forall x, x == x.
Proof.
 auto with qarith.
Qed.

Theorem Qeq_sym : forall x y, x == y -> y == x. 
Proof.
 auto with qarith.
Qed.

Theorem Qeq_trans : forall x y z, x == y -> y == z -> x == z.
Proof.
unfold Qeq in |- *; intros.
apply Zmult_reg_l with (QDen y). 
auto with qarith.
ring; rewrite H; ring.
rewrite Zmult_assoc; rewrite H0; ring.
Qed.

(** Furthermore, this equality is decidable: *)

Theorem Qeq_dec : forall x y, {x==y} + {~ x==y}.
Proof.
 intros; case (Z_eq_dec (Qnum x * QDen y) (Qnum y * QDen x)); auto.
Defined.

(** We now consider [Q] seen as a setoid. *)

Definition Q_Setoid : Setoid_Theory Q Qeq.
Proof.
 split; unfold Qeq in |- *; auto; apply Qeq_trans.
Qed.

Add Setoid Q Qeq Q_Setoid as Qsetoid.

Hint Resolve (Seq_refl Q Qeq Q_Setoid): qarith.
Hint Resolve (Seq_sym Q Qeq Q_Setoid): qarith.
Hint Resolve (Seq_trans Q Qeq Q_Setoid): qarith.

(** The addition, multiplication and opposite are defined 
   in the straightforward way: *)

Definition Qplus (x y : Q) :=
  (Qnum x * QDen y + Qnum y * QDen x) # (Qden x * Qden y).

Definition Qmult (x y : Q) := (Qnum x * Qnum y) # (Qden x * Qden y). 

Definition Qopp (x : Q) := (- Qnum x) # (Qden x).

Definition Qminus (x y : Q) := Qplus x (Qopp y).

Definition Qinv (x : Q) :=
  match Qnum x with
  | Z0 => 0
  | Zpos p => (QDen x)#p
  | Zneg p => (Zneg (Qden x))#p
  end.

Definition Qdiv (x y : Q) := Qmult x (Qinv y).

Infix "+" := Qplus : Q_scope.
Notation "- x" := (Qopp x) : Q_scope.
Infix "-" := Qminus : Q_scope.
Infix "*" := Qmult : Q_scope.
Notation "/ x" := (Qinv x) : Q_scope. 
Infix "/" := Qdiv : Q_scope. 

(** A light notation for [Zpos] *)

Notation " ' x " := (Zpos x) (at level 20, no associativity) : Z_scope.

(** Setoid compatibility results *)

Add Morphism Qplus : Qplus_comp. 
Proof.
unfold Qeq, Qplus; simpl.
Open Scope Z_scope.
intros (p1, p2) (q1, q2) H (r1, r2) (s1, s2) H0; simpl in *.
simpl_mult; ring.
replace (p1 * ('s2 * 'q2)) with (p1 * 'q2 * 's2) by ring.
rewrite H.
replace ('s2 * ('q2 * r1)) with (r1 * 's2 * 'q2) by ring.
rewrite H0.
ring.
Open Scope Q_scope.
Qed.

Add Morphism Qopp : Qopp_comp.
Proof.
unfold Qeq, Qopp; simpl.
intros; ring; rewrite H; ring.
Qed.

Add Morphism Qminus : Qminus_comp.
Proof.
intros.
unfold Qminus. 
rewrite H; rewrite H0; auto with qarith.
Qed.

Add Morphism Qmult : Qmult_comp.
Proof.
unfold Qeq; simpl.
Open Scope Z_scope.
intros (p1, p2) (q1, q2) H (r1, r2) (s1, s2) H0; simpl in *.
intros; simpl_mult; ring.
replace ('p2 * (q1 * s1)) with (q1 * 'p2 * s1) by ring.
rewrite <- H.
replace ('s2 * ('q2 * r1)) with (r1 * 's2 * 'q2) by ring.
rewrite H0.
ring.
Open Scope Q_scope.
Qed.

Add Morphism Qinv : Qinv_comp.
Proof.
unfold Qeq, Qinv; simpl.
Open Scope Z_scope.
intros (p1, p2) (q1, q2); simpl.
case p1; simpl.
intros. 
assert (q1 = 0).
 elim (Zmult_integral q1 ('p2)); auto with zarith.
 intros; discriminate.
subst; auto. 
case q1; simpl; intros; try discriminate.
rewrite (Pmult_comm p2 p); rewrite (Pmult_comm q2 p0); auto.
case q1; simpl; intros; try discriminate.
rewrite (Pmult_comm p2 p); rewrite (Pmult_comm q2 p0); auto.
Open Scope Q_scope.
Qed.

Add Morphism Qdiv : Qdiv_comp.
Proof.
intros; unfold Qdiv.
rewrite H; rewrite H0; auto with qarith.
Qed.

Add Morphism Qle with signature Qeq ==> Qeq ==> iff as Qle_comp.
Proof.
cut (forall x1 x2, x1==x2 -> forall x3 x4, x3==x4 -> x1<=x3 -> x2<=x4).
split; apply H; assumption || (apply Qeq_sym ; assumption).

unfold Qeq, Qle; simpl.
Open Scope Z_scope.
intros (p1, p2) (q1, q2) H (r1, r2) (s1, s2) H0 H1; simpl in *.
apply Zmult_le_reg_r with ('p2).
unfold Zgt; auto.
replace (q1 * 's2 * 'p2) with (q1 * 'p2 * 's2) by ring.
rewrite <- H.
apply Zmult_le_reg_r with ('r2).
unfold Zgt; auto.
replace (s1 * 'q2 * 'p2 * 'r2) with (s1 * 'r2 * 'q2 * 'p2) by ring.
rewrite <- H0.
replace (p1 * 'q2 * 's2 * 'r2) with ('q2 * 's2 * (p1 * 'r2)) by ring.
replace (r1 * 's2 * 'q2 * 'p2) with ('q2 * 's2 * (r1 * 'p2)) by ring.
auto with zarith.
Open Scope Q_scope.
Qed.

Add Morphism Qlt with signature Qeq ==> Qeq ==> iff as  Qlt_comp.
Proof.
cut (forall x1 x2, x1==x2 -> forall x3 x4, x3==x4 -> x1<x3 -> x2<x4).
split; apply H; assumption || (apply Qeq_sym ; assumption).

unfold Qeq, Qlt; simpl.
Open Scope Z_scope.
intros (p1, p2) (q1, q2) H (r1, r2) (s1, s2) H0 H1; simpl in *.
apply Zgt_lt.
generalize (Zlt_gt _ _ H1); clear H1; intro H1.
apply Zmult_gt_reg_r with ('p2); auto with zarith.
replace (q1 * 's2 * 'p2) with (q1 * 'p2 * 's2) by ring.
rewrite <- H.
apply Zmult_gt_reg_r with ('r2); auto with zarith.
replace (s1 * 'q2 * 'p2 * 'r2) with (s1 * 'r2 * 'q2 * 'p2) by ring.
rewrite <- H0.
replace (p1 * 'q2 * 's2 * 'r2) with ('q2 * 's2 * (p1 * 'r2)) by ring.
replace (r1 * 's2 * 'q2 * 'p2) with ('q2 * 's2 * (r1 * 'p2)) by ring. 
apply Zlt_gt.
apply Zmult_gt_0_lt_compat_l; auto with zarith.
Open Scope Q_scope.
Qed.

(** [0] and [1] are apart *)

Lemma Q_apart_0_1 : ~ 1 == 0.
Proof.
 unfold Qeq; auto with qarith.
Qed.

(** Addition is associative: *)

Theorem Qplus_assoc : forall x y z, x+(y+z)==(x+y)+z.
Proof.
 intros (x1, x2) (y1, y2) (z1, z2).
 unfold Qeq, Qplus; simpl; simpl_mult; ring.
Qed.

(** [0] is a neutral element for addition: *)

Lemma Qplus_0_l : forall x, 0+x == x.
Proof.
 intros (x1, x2); unfold Qeq, Qplus; simpl; ring.
Qed.

Lemma Qplus_0_r : forall x, x+0 == x.
Proof.
 intros (x1, x2); unfold Qeq, Qplus; simpl.
 rewrite Pmult_comm; simpl; ring.
Qed. 

(** Commutativity of addition: *)

Theorem Qplus_comm : forall x y, x+y == y+x.
Proof.
 intros (x1, x2); unfold Qeq, Qplus; simpl.
 intros; rewrite Pmult_comm; ring.
Qed.

(** Properties of [Qopp] *)

Lemma Qopp_involutive : forall q, - -q == q.
Proof.
 red; simpl; intros; ring.
Qed.

Theorem Qplus_opp_r : forall q, q+(-q) == 0.
Proof.
 red; simpl; intro; ring.
Qed.

(** Multiplication is associative: *)

Theorem Qmult_assoc : forall n m p, n*(m*p)==(n*m)*p.
Proof.
 intros; red; simpl; rewrite Pmult_assoc; ring.
Qed.

(** [1] is a neutral element for multiplication: *)

Lemma Qmult_1_l : forall n, 1*n == n.
Proof.
 intro; red; simpl; destruct (Qnum n); auto.
Qed.

Theorem Qmult_1_r : forall n, n*1==n.
Proof.
 intro; red; simpl.
 rewrite Zmult_1_r with (n := Qnum n).
 rewrite Pmult_comm; simpl; trivial. 
Qed.

(** Commutativity of multiplication *)

Theorem Qmult_comm : forall x y, x*y==y*x.
Proof.
 intros; red; simpl; rewrite Pmult_comm; ring.
Qed.

(** Distributivity *)

Theorem Qmult_plus_distr_r : forall x y z, x*(y+z)==(x*y)+(x*z).
Proof.
intros (x1, x2) (y1, y2) (z1, z2).
unfold Qeq, Qmult, Qplus; simpl; simpl_mult; ring.
Qed.

Theorem Qmult_plus_distr_l : forall x y z, (x+y)*z==(x*z)+(y*z).
Proof.
intros (x1, x2) (y1, y2) (z1, z2).
unfold Qeq, Qmult, Qplus; simpl; simpl_mult; ring.
Qed.

(** Integrality *)

Theorem Qmult_integral : forall x y, x*y==0 -> x==0 \/ y==0.
Proof.
 intros (x1,x2) (y1,y2).
 unfold Qeq, Qmult; simpl; intros.
 destruct (Zmult_integral (x1*1)%Z (y1*1)%Z); auto.
 rewrite <- H; ring.
Qed.

Theorem Qmult_integral_l : forall x y, ~ x == 0 -> x*y == 0 -> y == 0.
Proof.
 intros (x1, x2) (y1, y2).
 unfold Qeq, Qmult; simpl; intros.
 apply Zmult_integral_l with x1; auto with zarith.
 rewrite <- H0; ring.
Qed.

(** Inverse and division. *) 

Theorem Qmult_inv_r : forall x, ~ x == 0 -> x*(/x) == 1.
Proof.
 intros (x1, x2); unfold Qeq, Qdiv, Qmult; case x1; simpl;
  intros; simpl_mult; try ring.
 elim H; auto. 
Qed.

Lemma Qinv_mult_distr : forall p q, / (p * q) == /p * /q.
Proof.
intros (x1,x2) (y1,y2); unfold Qeq, Qinv, Qmult; simpl.
destruct x1; simpl; auto; 
 destruct y1; simpl; auto.
Qed.

Theorem Qdiv_mult_l : forall x y, ~ y == 0 -> (x*y)/y == x.
Proof.
 intros; unfold Qdiv.
 rewrite <- (Qmult_assoc x y (Qinv y)).
 rewrite (Qmult_inv_r y H).
 apply Qmult_1_r.
Qed.

Theorem Qmult_div_r : forall x y, ~ y == 0 -> y*(x/y) == x.
Proof.
 intros; unfold Qdiv.
 rewrite (Qmult_assoc y x (Qinv y)).
 rewrite (Qmult_comm y x).
 fold (Qdiv (Qmult x y) y).
 apply Qdiv_mult_l; auto.
Qed.

(** Properties of order upon Q. *)

Lemma Qle_refl : forall x, x<=x.
Proof.
unfold Qle; auto with zarith.
Qed.

Lemma Qle_antisym : forall x y, x<=y -> y<=x -> x==y.
Proof.
unfold Qle, Qeq; auto with zarith.
Qed.

Lemma Qle_trans : forall x y z, x<=y -> y<=z -> x<=z.
Proof.
unfold Qle; intros (x1, x2) (y1, y2) (z1, z2); simpl; intros.
Open Scope Z_scope.
apply Zmult_le_reg_r with ('y2).
red; trivial.
apply Zle_trans with (y1 * 'x2 * 'z2).
replace (x1 * 'z2 * 'y2) with (x1 * 'y2 * 'z2) by ring.
apply Zmult_le_compat_r; auto with zarith. 
replace (y1 * 'x2 * 'z2) with (y1 * 'z2 * 'x2) by ring.
replace (z1 * 'x2 * 'y2) with (z1 * 'y2 * 'x2) by ring.
apply Zmult_le_compat_r; auto with zarith. 
Open Scope Q_scope.
Qed.

Lemma Qlt_not_eq : forall x y, x<y -> ~ x==y.
Proof.
unfold Qlt, Qeq; auto with zarith.
Qed.

(** Large = strict or equal *)

Lemma Qlt_le_weak : forall x y, x<y -> x<=y.
Proof.
unfold Qle, Qlt; auto with zarith.
Qed.

Lemma Qle_lt_trans : forall x y z, x<=y -> y<z -> x<z.
Proof.
unfold Qle, Qlt; intros (x1, x2) (y1, y2) (z1, z2); simpl; intros.
Open Scope Z_scope.
apply Zgt_lt.
apply Zmult_gt_reg_r with ('y2).
red; trivial.
apply Zgt_le_trans with (y1 * 'x2 * 'z2).
replace (y1 * 'x2 * 'z2) with (y1 * 'z2 * 'x2) by ring.
replace (z1 * 'x2 * 'y2) with (z1 * 'y2 * 'x2) by ring.
apply Zmult_gt_compat_r; auto with zarith. 
replace (x1 * 'z2 * 'y2) with (x1 * 'y2 * 'z2) by ring.
apply Zmult_le_compat_r; auto with zarith. 
Open Scope Q_scope.
Qed.

Lemma Qlt_le_trans : forall x y z, x<y -> y<=z -> x<z.
Proof.
unfold Qle, Qlt; intros (x1, x2) (y1, y2) (z1, z2); simpl; intros.
Open Scope Z_scope.
apply Zgt_lt.
apply Zmult_gt_reg_r with ('y2).
red; trivial.
apply Zle_gt_trans with (y1 * 'x2 * 'z2).
replace (y1 * 'x2 * 'z2) with (y1 * 'z2 * 'x2) by ring.
replace (z1 * 'x2 * 'y2) with (z1 * 'y2 * 'x2) by ring.
apply Zmult_le_compat_r; auto with zarith. 
replace (x1 * 'z2 * 'y2) with (x1 * 'y2 * 'z2) by ring.
apply Zmult_gt_compat_r; auto with zarith. 
Open Scope Q_scope.
Qed.

Lemma Qlt_trans : forall x y z, x<y -> y<z -> x<z.
Proof.
intros.
apply Qle_lt_trans with y; auto.
apply Qlt_le_weak; auto.
Qed.

(** [x<y] iff [~(y<=x)] *)

Lemma Qnot_lt_le : forall x y, ~ x<y -> y<=x.
Proof.
unfold Qle, Qlt; auto with zarith.
Qed.

Lemma Qnot_le_lt : forall x y, ~ x<=y -> y<x.
Proof.
unfold Qle, Qlt; auto with zarith.
Qed.

Lemma Qlt_not_le : forall x y, x<y -> ~ y<=x.
Proof.
unfold Qle, Qlt; auto with zarith.
Qed.

Lemma Qle_not_lt : forall x y, x<=y -> ~ y<x.
Proof.
unfold Qle, Qlt; auto with zarith.
Qed.

Lemma Qle_lt_or_eq : forall x y, x<=y -> x<y \/ x==y.
Proof.
unfold Qle, Qlt, Qeq; intros; apply Zle_lt_or_eq; auto.
Qed.

(** Some decidability results about orders. *)

Lemma Q_dec : forall x y, {x<y} + {y<x} + {x==y}.
Proof.
unfold Qlt, Qle, Qeq; intros.
exact (Z_dec' (Qnum x * QDen y) (Qnum y * QDen x)).
Defined.

Lemma Qlt_le_dec : forall x y, {x<y} + {y<=x}.
Proof.
unfold Qlt, Qle; intros.
exact (Z_lt_le_dec (Qnum x * QDen y) (Qnum y * QDen x)).
Defined.

(** Compatibility of operations with respect to order. *)

Lemma Qopp_le_compat : forall p q, p<=q -> -q <= -p.
Proof.
intros (a1,a2) (b1,b2); unfold Qle, Qlt; simpl.
do 2 rewrite <- Zopp_mult_distr_l; omega.
Qed.

Lemma Qle_minus_iff : forall p q, p <= q <-> 0 <= q+-p.
Proof.
intros (x1,x2) (y1,y2); unfold Qle; simpl.
rewrite <- Zopp_mult_distr_l.
split; omega.
Qed.

Lemma Qlt_minus_iff : forall p q, p < q <-> 0 < q+-p.
Proof.
intros (x1,x2) (y1,y2); unfold Qlt; simpl.
rewrite <- Zopp_mult_distr_l.
split; omega.
Qed.

Lemma Qplus_le_compat :
 forall x y z t, x<=y -> z<=t -> x+z <= y+t.
Proof.
unfold Qplus, Qle; intros (x1, x2) (y1, y2) (z1, z2) (t1, t2);
 simpl; simpl_mult.
Open Scope Z_scope.
intros.
match goal with |- ?a <= ?b => ring a; ring b end.
apply Zplus_le_compat.
replace ('t2 * ('y2 * (z1 * 'x2))) with (z1 * 't2 * ('y2 * 'x2)) by ring.
replace ('z2 * ('x2 * (t1 * 'y2))) with (t1 * 'z2 * ('y2 * 'x2)) by ring.
apply Zmult_le_compat_r; auto with zarith.
replace ('t2 * ('y2 * ('z2 * x1))) with (x1 * 'y2 * ('z2 * 't2)) by ring.
replace ('z2 * ('x2 * ('t2 * y1))) with (y1 * 'x2 * ('z2 * 't2)) by ring.
apply Zmult_le_compat_r; auto with zarith.
Open Scope Q_scope.
Qed.

Lemma Qmult_le_compat_r : forall x y z, x <= y -> 0 <= z -> x*z <= y*z.
Proof.
intros (a1,a2) (b1,b2) (c1,c2); unfold Qle, Qlt; simpl.
Open Scope Z_scope.
intros; simpl_mult.
replace (a1*c1*('b2*'c2)) with ((a1*'b2)*(c1*'c2)) by ring.
replace (b1*c1*('a2*'c2)) with ((b1*'a2)*(c1*'c2)) by ring.
apply Zmult_le_compat_r; auto with zarith.
Open Scope Q_scope.
Qed.

Lemma Qmult_lt_0_le_reg_r : forall x y z, 0 <  z  -> x*z <= y*z -> x <= y.
Proof.
intros (a1,a2) (b1,b2) (c1,c2); unfold Qle, Qlt; simpl.
Open Scope Z_scope.
simpl_mult.
replace (a1*c1*('b2*'c2)) with ((a1*'b2)*(c1*'c2)) by ring.
replace (b1*c1*('a2*'c2)) with ((b1*'a2)*(c1*'c2)) by ring.
intros; apply Zmult_le_reg_r with (c1*'c2); auto with zarith.
Open Scope Q_scope.
Qed.

Lemma Qmult_lt_compat_r : forall x y z, 0 < z  -> x < y -> x*z < y*z.
Proof.
intros (a1,a2) (b1,b2) (c1,c2); unfold Qle, Qlt; simpl.
Open Scope Z_scope.
intros; simpl_mult.
replace (a1*c1*('b2*'c2)) with ((a1*'b2)*(c1*'c2)) by ring.
replace (b1*c1*('a2*'c2)) with ((b1*'a2)*(c1*'c2)) by ring.
apply Zmult_lt_compat_r; auto with zarith.
apply Zmult_lt_0_compat.
omega.
compute; auto.
Open Scope Q_scope.
Qed.

(** Rational to the n-th power *)

Fixpoint Qpower (q:Q)(n:nat) { struct n } : Q := 
 match n with 
  | O => 1
  | S n => q * (Qpower q n)
 end. 

Notation " q ^ n " := (Qpower q n) : Q_scope.

Lemma Qpower_1 : forall n, 1^n == 1.
Proof.
induction n; simpl; auto with qarith.
rewrite IHn; auto with qarith.
Qed.

Lemma Qpower_0 : forall n, n<>O -> 0^n == 0.
Proof.
destruct n; simpl.
destruct 1; auto.
intros. 
compute; auto.
Qed.

Lemma Qpower_pos : forall p n, 0 <= p -> 0 <= p^n.
Proof.
induction n; simpl; auto with qarith.
intros; compute; intro; discriminate.
intros.
apply Qle_trans with (0*(p^n)).
compute; intro; discriminate.
apply Qmult_le_compat_r; auto.
Qed.

Lemma Qinv_power_n : forall n p, (1#p)^n == /(inject_Z ('p))^n.
Proof.
induction n.
compute; auto.
simpl.
intros; rewrite IHn; clear IHn.
unfold Qdiv; rewrite Qinv_mult_distr.
setoid_replace (1#p) with (/ inject_Z ('p)).
apply Qeq_refl.
compute; auto.
Qed.