1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: Syntax.v 13492 2010-10-04 21:20:01Z herbelin $ *)
(** Custom notations and implicits for Coq prelude definitions.
Author: Matthieu Sozeau
Institution: LRI, CNRS UMR 8623 - University Paris Sud
*)
(** Haskell-style notations for the unit type and value. *)
Notation " () " := Datatypes.unit : type_scope.
Notation " () " := tt.
(** Set maximally inserted implicit arguments for standard definitions. *)
Implicit Arguments Some [[A]].
Implicit Arguments None [[A]].
Implicit Arguments inl [[A] [B]] [A].
Implicit Arguments inr [[A] [B]] [B].
Implicit Arguments left [[A] [B]] [A].
Implicit Arguments right [[A] [B]] [B].
Implicit Arguments pair [[A] [B]].
Implicit Arguments fst [[A] [B]].
Implicit Arguments snd [[A] [B]].
Require Import Coq.Lists.List.
Implicit Arguments nil [[A]].
Implicit Arguments cons [[A]].
(** Standard notations for lists. *)
Notation " [ ] " := nil : list_scope.
Notation " [ x ] " := (cons x nil) : list_scope.
Notation " [ x ; .. ; y ] " := (cons x .. (cons y nil) ..) : list_scope.
(** Implicit arguments for vectors. *)
Require Import Bvector.
Implicit Arguments Vnil [[A]] [].
Implicit Arguments Vcons [[A] [n]] [].
(** Treating n-ary exists *)
Notation " 'exists' x y , p" := (ex (fun x => (ex (fun y => p))))
(at level 200, x ident, y ident, right associativity) : type_scope.
Notation " 'exists' x y z , p" := (ex (fun x => (ex (fun y => (ex (fun z => p))))))
(at level 200, x ident, y ident, z ident, right associativity) : type_scope.
Notation " 'exists' x y z w , p" := (ex (fun x => (ex (fun y => (ex (fun z => (ex (fun w => p))))))))
(at level 200, x ident, y ident, z ident, w ident, right associativity) : type_scope.
Tactic Notation "exists" constr(x) := exists x.
Tactic Notation "exists" constr(x) constr(y) := exists x ; exists y.
Tactic Notation "exists" constr(x) constr(y) constr(z) := exists x ; exists y ; exists z.
Tactic Notation "exists" constr(x) constr(y) constr(z) constr(w) := exists x ; exists y ; exists z ; exists w.
|