summaryrefslogtreecommitdiff
path: root/theories/Program/Subset.v
blob: 9d82fde81b561eb1f30138f7c06080d66c135ddb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(* $Id: Subset.v 13323 2010-07-24 15:57:30Z herbelin $ *)

(** Tactics related to subsets and proof irrelevance. *)

Require Import Coq.Program.Utils.
Require Import Coq.Program.Equality.

Open Local Scope program_scope.

(** The following tactics implement a poor-man's solution for proof-irrelevance: it tries to
   factorize every proof of the same proposition in a goal so that equality of such proofs becomes trivial. *)

Ltac on_subset_proof_aux tac T :=
  match T with
    | context [ exist ?P _ ?p ] => try on_subset_proof_aux tac P ; tac p
  end.

Ltac on_subset_proof tac :=
  match goal with
    [ |- ?T ] => on_subset_proof_aux tac T
  end.

Ltac abstract_any_hyp H' p :=
  match type of p with
    ?X =>
    match goal with
      | [ H : X |- _ ] => fail 1
      | _ => set (H':=p) ; try (change p with H') ; clearbody H'
    end
  end.

Ltac abstract_subset_proof :=
  on_subset_proof ltac:(fun p => let H := fresh "eqH" in abstract_any_hyp H p ; simpl in H).

Ltac abstract_subset_proofs := repeat abstract_subset_proof.

Ltac pi_subset_proof_hyp p :=
  match type of p with
    ?X =>
    match goal with
      | [ H : X |- _ ] =>
        match p with
          | H => fail 2
          | _ => rewrite (proof_irrelevance X p H)
        end
      | _ => fail " No hypothesis with same type "
    end
  end.

Ltac pi_subset_proof := on_subset_proof pi_subset_proof_hyp.

Ltac pi_subset_proofs := repeat pi_subset_proof.

(** The two preceding tactics in sequence. *)

Ltac clear_subset_proofs :=
  abstract_subset_proofs ; simpl in * |- ; pi_subset_proofs ; clear_dups.

Ltac pi := repeat progress f_equal ; apply proof_irrelevance.

Lemma subset_eq : forall A (P : A -> Prop) (n m : sig P), n = m <-> `n = `m.
Proof.
  induction n.
  induction m.
  simpl.
  split ; intros ; subst.

  inversion H.
  reflexivity.

  pi.
Qed.

(* Somewhat trivial definition, but not unfolded automatically hence we can match on [match_eq ?A ?B ?x ?f]
   in tactics. *)

Definition match_eq (A B : Type) (x : A) (fn : forall (y : A | y = x), B) : B :=
  fn (exist _ x eq_refl).

(* This is what we want to be able to do: replace the originaly matched object by a new,
   propositionally equal one. If [fn] works on [x] it should work on any [y | y = x]. *)

Lemma match_eq_rewrite : forall (A B : Type) (x : A) (fn : forall (y : A | y = x), B)
  (y : A | y = x),
  match_eq A B x fn = fn y.
Proof.
  intros.
  unfold match_eq.
  f_equal.
  destruct y.
  (* uses proof-irrelevance *)
  apply <- subset_eq.
  symmetry. assumption.
Qed.

(** Now we make a tactic to be able to rewrite a term [t] which is applied to a [match_eq] using an arbitrary
   equality [t = u], and [u] is now the subject of the [match]. *)

Ltac rewrite_match_eq H :=
  match goal with
    [ |- ?T ] =>
    match T with
      context [ match_eq ?A ?B ?t ?f ] =>
      rewrite (match_eq_rewrite A B t f (exist _ _ (sym_eq H)))
    end
  end.

(** Otherwise we can simply unfold [match_eq] and the term trivially reduces to the original definition. *)

Ltac simpl_match_eq := unfold match_eq ; simpl.