blob: 9d82fde81b561eb1f30138f7c06080d66c135ddb (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: Subset.v 13323 2010-07-24 15:57:30Z herbelin $ *)
(** Tactics related to subsets and proof irrelevance. *)
Require Import Coq.Program.Utils.
Require Import Coq.Program.Equality.
Open Local Scope program_scope.
(** The following tactics implement a poor-man's solution for proof-irrelevance: it tries to
factorize every proof of the same proposition in a goal so that equality of such proofs becomes trivial. *)
Ltac on_subset_proof_aux tac T :=
match T with
| context [ exist ?P _ ?p ] => try on_subset_proof_aux tac P ; tac p
end.
Ltac on_subset_proof tac :=
match goal with
[ |- ?T ] => on_subset_proof_aux tac T
end.
Ltac abstract_any_hyp H' p :=
match type of p with
?X =>
match goal with
| [ H : X |- _ ] => fail 1
| _ => set (H':=p) ; try (change p with H') ; clearbody H'
end
end.
Ltac abstract_subset_proof :=
on_subset_proof ltac:(fun p => let H := fresh "eqH" in abstract_any_hyp H p ; simpl in H).
Ltac abstract_subset_proofs := repeat abstract_subset_proof.
Ltac pi_subset_proof_hyp p :=
match type of p with
?X =>
match goal with
| [ H : X |- _ ] =>
match p with
| H => fail 2
| _ => rewrite (proof_irrelevance X p H)
end
| _ => fail " No hypothesis with same type "
end
end.
Ltac pi_subset_proof := on_subset_proof pi_subset_proof_hyp.
Ltac pi_subset_proofs := repeat pi_subset_proof.
(** The two preceding tactics in sequence. *)
Ltac clear_subset_proofs :=
abstract_subset_proofs ; simpl in * |- ; pi_subset_proofs ; clear_dups.
Ltac pi := repeat progress f_equal ; apply proof_irrelevance.
Lemma subset_eq : forall A (P : A -> Prop) (n m : sig P), n = m <-> `n = `m.
Proof.
induction n.
induction m.
simpl.
split ; intros ; subst.
inversion H.
reflexivity.
pi.
Qed.
(* Somewhat trivial definition, but not unfolded automatically hence we can match on [match_eq ?A ?B ?x ?f]
in tactics. *)
Definition match_eq (A B : Type) (x : A) (fn : forall (y : A | y = x), B) : B :=
fn (exist _ x eq_refl).
(* This is what we want to be able to do: replace the originaly matched object by a new,
propositionally equal one. If [fn] works on [x] it should work on any [y | y = x]. *)
Lemma match_eq_rewrite : forall (A B : Type) (x : A) (fn : forall (y : A | y = x), B)
(y : A | y = x),
match_eq A B x fn = fn y.
Proof.
intros.
unfold match_eq.
f_equal.
destruct y.
(* uses proof-irrelevance *)
apply <- subset_eq.
symmetry. assumption.
Qed.
(** Now we make a tactic to be able to rewrite a term [t] which is applied to a [match_eq] using an arbitrary
equality [t = u], and [u] is now the subject of the [match]. *)
Ltac rewrite_match_eq H :=
match goal with
[ |- ?T ] =>
match T with
context [ match_eq ?A ?B ?t ?f ] =>
rewrite (match_eq_rewrite A B t f (exist _ _ (sym_eq H)))
end
end.
(** Otherwise we can simply unfold [match_eq] and the term trivially reduces to the original definition. *)
Ltac simpl_match_eq := unfold match_eq ; simpl.
|