blob: c776070a6b02d62af959a222e3d74f809e64cabd (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
(* -*- coq-prog-args: ("-emacs-U") -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Equality.v 11282 2008-07-28 11:51:53Z msozeau $ i*)
(** Tactics related to (dependent) equality and proof irrelevance. *)
Require Export ProofIrrelevance.
Require Export JMeq.
Require Import Coq.Program.Tactics.
(** Notation for heterogenous equality. *)
Notation " [ x : X ] = [ y : Y ] " := (@JMeq X x Y y) (at level 0, X at next level, Y at next level).
(** Do something on an heterogeneous equality appearing in the context. *)
Ltac on_JMeq tac :=
match goal with
| [ H : @JMeq ?x ?X ?y ?Y |- _ ] => tac H
end.
(** Try to apply [JMeq_eq] to get back a regular equality when the two types are equal. *)
Ltac simpl_one_JMeq :=
on_JMeq ltac:(fun H => replace_hyp H (JMeq_eq H)).
(** Repeat it for every possible hypothesis. *)
Ltac simpl_JMeq := repeat simpl_one_JMeq.
(** Just simplify an h.eq. without clearing it. *)
Ltac simpl_one_dep_JMeq :=
on_JMeq
ltac:(fun H => let H' := fresh "H" in
assert (H' := JMeq_eq H)).
Require Import Eqdep.
(** Simplify dependent equality using sigmas to equality of the second projections if possible.
Uses UIP. *)
Ltac simpl_existT :=
match goal with
[ H : existT _ ?x _ = existT _ ?x _ |- _ ] =>
let Hi := fresh H in assert(Hi:=inj_pairT2 _ _ _ _ _ H) ; clear H
end.
Ltac simpl_existTs := repeat simpl_existT.
(** Tries to eliminate a call to [eq_rect] (the substitution principle) by any means available. *)
Ltac elim_eq_rect :=
match goal with
| [ |- ?t ] =>
match t with
| context [ @eq_rect _ _ _ _ _ ?p ] =>
let P := fresh "P" in
set (P := p); simpl in P ;
((case P ; clear P) || (clearbody P; rewrite (UIP_refl _ _ P); clear P))
| context [ @eq_rect _ _ _ _ _ ?p _ ] =>
let P := fresh "P" in
set (P := p); simpl in P ;
((case P ; clear P) || (clearbody P; rewrite (UIP_refl _ _ P); clear P))
end
end.
(** Rewrite using uniqueness of indentity proofs [H = refl_equal X]. *)
Ltac simpl_uip :=
match goal with
[ H : ?X = ?X |- _ ] => rewrite (UIP_refl _ _ H) in *; clear H
end.
(** Simplify equalities appearing in the context and goal. *)
Ltac simpl_eq := simpl ; unfold eq_rec_r, eq_rec ; repeat (elim_eq_rect ; simpl) ; repeat (simpl_uip ; simpl).
(** Try to abstract a proof of equality, if no proof of the same equality is present in the context. *)
Ltac abstract_eq_hyp H' p :=
let ty := type of p in
let tyred := eval simpl in ty in
match tyred with
?X = ?Y =>
match goal with
| [ H : X = Y |- _ ] => fail 1
| _ => set (H':=p) ; try (change p with H') ; clearbody H' ; simpl in H'
end
end.
(** Apply the tactic tac to proofs of equality appearing as coercion arguments.
Just redefine this tactic (using [Ltac on_coerce_proof tac ::=]) to handle custom coercion operators.
*)
Ltac on_coerce_proof tac T :=
match T with
| context [ eq_rect _ _ _ _ ?p ] => tac p
end.
Ltac on_coerce_proof_gl tac :=
match goal with
[ |- ?T ] => on_coerce_proof tac T
end.
(** Abstract proofs of equalities of coercions. *)
Ltac abstract_eq_proof := on_coerce_proof_gl ltac:(fun p => let H := fresh "eqH" in abstract_eq_hyp H p).
Ltac abstract_eq_proofs := repeat abstract_eq_proof.
(** Factorize proofs, by using proof irrelevance so that two proofs of the same equality
in the goal become convertible. *)
Ltac pi_eq_proof_hyp p :=
let ty := type of p in
let tyred := eval simpl in ty in
match tyred with
?X = ?Y =>
match goal with
| [ H : X = Y |- _ ] =>
match p with
| H => fail 2
| _ => rewrite (proof_irrelevance (X = Y) p H)
end
| _ => fail " No hypothesis with same type "
end
end.
(** Factorize proofs of equality appearing as coercion arguments. *)
Ltac pi_eq_proof := on_coerce_proof_gl pi_eq_proof_hyp.
Ltac pi_eq_proofs := repeat pi_eq_proof.
(** The two preceding tactics in sequence. *)
Ltac clear_eq_proofs :=
abstract_eq_proofs ; pi_eq_proofs.
Hint Rewrite <- eq_rect_eq : refl_id.
(** The refl_id database should be populated with lemmas of the form
[coerce_* t (refl_equal _) = t]. *)
Ltac rewrite_refl_id := autorewrite with refl_id.
(** Clear the context and goal of equality proofs. *)
Ltac clear_eq_ctx :=
rewrite_refl_id ; clear_eq_proofs.
(** Reapeated elimination of [eq_rect] applications.
Abstracting equalities makes it run much faster than an naive implementation. *)
Ltac simpl_eqs :=
repeat (elim_eq_rect ; simpl ; clear_eq_ctx).
(** Clear unused reflexivity proofs. *)
Ltac clear_refl_eq :=
match goal with [ H : ?X = ?X |- _ ] => clear H end.
Ltac clear_refl_eqs := repeat clear_refl_eq.
(** Clear unused equality proofs. *)
Ltac clear_eq :=
match goal with [ H : _ = _ |- _ ] => clear H end.
Ltac clear_eqs := repeat clear_eq.
(** Combine all the tactics to simplify goals containing coercions. *)
Ltac simplify_eqs :=
simpl ; simpl_eqs ; clear_eq_ctx ; clear_refl_eqs ;
try subst ; simpl ; repeat simpl_uip ; rewrite_refl_id.
(** A tactic that tries to remove trivial equality guards in induction hypotheses coming
from [dependent induction]/[generalize_eqs] invocations. *)
Ltac simpl_IH_eq H :=
match type of H with
| @JMeq _ ?x _ _ -> _ =>
refine_hyp (H (JMeq_refl x))
| _ -> @JMeq _ ?x _ _ -> _ =>
refine_hyp (H _ (JMeq_refl x))
| _ -> _ -> @JMeq _ ?x _ _ -> _ =>
refine_hyp (H _ _ (JMeq_refl x))
| _ -> _ -> _ -> @JMeq _ ?x _ _ -> _ =>
refine_hyp (H _ _ _ (JMeq_refl x))
| _ -> _ -> _ -> _ -> @JMeq _ ?x _ _ -> _ =>
refine_hyp (H _ _ _ _ (JMeq_refl x))
| _ -> _ -> _ -> _ -> _ -> @JMeq _ ?x _ _ -> _ =>
refine_hyp (H _ _ _ _ _ (JMeq_refl x))
| ?x = _ -> _ =>
refine_hyp (H (refl_equal x))
| _ -> ?x = _ -> _ =>
refine_hyp (H _ (refl_equal x))
| _ -> _ -> ?x = _ -> _ =>
refine_hyp (H _ _ (refl_equal x))
| _ -> _ -> _ -> ?x = _ -> _ =>
refine_hyp (H _ _ _ (refl_equal x))
| _ -> _ -> _ -> _ -> ?x = _ -> _ =>
refine_hyp (H _ _ _ _ (refl_equal x))
| _ -> _ -> _ -> _ -> _ -> ?x = _ -> _ =>
refine_hyp (H _ _ _ _ _ (refl_equal x))
end.
Ltac simpl_IH_eqs H := repeat simpl_IH_eq H.
Ltac do_simpl_IHs_eqs :=
match goal with
| [ H : context [ @JMeq _ _ _ _ -> _ ] |- _ ] => progress (simpl_IH_eqs H)
| [ H : context [ _ = _ -> _ ] |- _ ] => progress (simpl_IH_eqs H)
end.
Ltac simpl_IHs_eqs := repeat do_simpl_IHs_eqs.
Ltac simpl_depind := subst* ; autoinjections ; try discriminates ;
simpl_JMeq ; simpl_existTs ; simpl_IHs_eqs.
(** The following tactics allow to do induction on an already instantiated inductive predicate
by first generalizing it and adding the proper equalities to the context, in a maner similar to
the BasicElim tactic of "Elimination with a motive" by Conor McBride. *)
(** The [do_depind] higher-order tactic takes an induction tactic as argument and an hypothesis
and starts a dependent induction using this tactic. *)
Ltac do_depind tac H :=
generalize_eqs_vars H ; tac H ; repeat progress simpl_depind.
(** A variant where generalized variables should be given by the user. *)
Ltac do_depind' tac H :=
generalize_eqs H ; tac H ; repeat progress simpl_depind.
(** Calls [destruct] on the generalized hypothesis, results should be similar to inversion. *)
Tactic Notation "dependent" "destruction" ident(H) :=
do_depind ltac:(fun hyp => destruct hyp ; intros) H ; subst*.
Tactic Notation "dependent" "destruction" ident(H) "using" constr(c) :=
do_depind ltac:(fun hyp => destruct hyp using c ; intros) H.
(** This tactic also generalizes the goal by the given variables before the induction. *)
Tactic Notation "dependent" "destruction" ident(H) "generalizing" ne_hyp_list(l) :=
do_depind' ltac:(fun hyp => revert l ; destruct hyp ; intros) H.
Tactic Notation "dependent" "destruction" ident(H) "generalizing" ne_hyp_list(l) "using" constr(c) :=
do_depind' ltac:(fun hyp => revert l ; destruct hyp using c ; intros) H.
(** Then we have wrappers for usual calls to induction. One can customize the induction tactic by
writting another wrapper calling do_depind. *)
Tactic Notation "dependent" "induction" ident(H) :=
do_depind ltac:(fun hyp => induction hyp ; intros) H.
Tactic Notation "dependent" "induction" ident(H) "using" constr(c) :=
do_depind ltac:(fun hyp => induction hyp using c ; intros) H.
(** This tactic also generalizes the goal by the given variables before the induction. *)
Tactic Notation "dependent" "induction" ident(H) "generalizing" ne_hyp_list(l) :=
do_depind' ltac:(fun hyp => generalize l ; clear l ; induction hyp ; intros) H.
Tactic Notation "dependent" "induction" ident(H) "generalizing" ne_hyp_list(l) "using" constr(c) :=
do_depind' ltac:(fun hyp => generalize l ; clear l ; induction hyp using c ; intros) H.
|