summaryrefslogtreecommitdiff
path: root/theories/Program/Combinators.v
blob: e267fbbe20e6305f67316fa896c082efcf2d760f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* Proofs about standard combinators, exports functional extensionality.
 *
 * Author: Matthieu Sozeau
 * Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
 *              91405 Orsay, France *)

Require Import Coq.Program.Basics.
Require Export Coq.Program.FunctionalExtensionality.

Open Scope program_scope.

(** Composition has [id] for neutral element and is associative. *)

Lemma compose_id_left : forall A B (f : A -> B), id ∘ f = f.
Proof.
  intros.
  unfold id, compose.
  symmetry. apply eta_expansion.
Qed.

Lemma compose_id_right : forall A B (f : A -> B), f ∘ id = f.
Proof.
  intros.
  unfold id, compose.
  symmetry ; apply eta_expansion.
Qed.

Lemma compose_assoc : forall A B C D (f : A -> B) (g : B -> C) (h : C -> D), 
  h ∘ g ∘ f = h ∘ (g ∘ f).
Proof.
  intros.
  reflexivity.
Qed.

Hint Rewrite @compose_id_left @compose_id_right @compose_assoc : core.

(** [flip] is involutive. *)

Lemma flip_flip : forall A B C, @flip A B C ∘ flip = id.
Proof.
  unfold flip, compose.
  intros.
  extensionality x ; extensionality y ; extensionality z.
  reflexivity.
Qed.

(** [prod_curry] and [prod_uncurry] are each others inverses. *)

Lemma prod_uncurry_curry : forall A B C, @prod_uncurry A B C ∘ prod_curry = id.
Proof.
  simpl ; intros.
  unfold prod_uncurry, prod_curry, compose.
  extensionality x ; extensionality y ; extensionality z.
  reflexivity.
Qed.

Lemma prod_curry_uncurry : forall A B C, @prod_curry A B C ∘ prod_uncurry = id.
Proof.
  simpl ; intros.
  unfold prod_uncurry, prod_curry, compose.
  extensionality x ; extensionality p.
  destruct p ; simpl ; reflexivity.
Qed.