summaryrefslogtreecommitdiff
path: root/theories/Program/Basics.v
blob: a1a78acc8a801be483af4be156e9f5c2bdf3f97c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* Standard functions and combinators.
 * Proofs about them require functional extensionality and can be found in [Combinators].
 *
 * Author: Matthieu Sozeau
 * Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
 *              91405 Orsay, France *)

(* $Id: Basics.v 11046 2008-06-03 22:48:06Z msozeau $ *)

(** The polymorphic identity function. *)

Definition id {A} := fun x : A => x.

(** Function composition. *)

Definition compose {A B C} (g : B -> C) (f : A -> B) := 
  fun x : A => g (f x).

Hint Unfold compose.

Notation " g ∘ f " := (compose g f)  
  (at level 40, left associativity) : program_scope.

Open Local Scope program_scope.

(** The non-dependent function space between [A] and [B]. *)

Definition arrow (A B : Type) := A -> B.

(** Logical implication. *)

Definition impl (A B : Prop) : Prop := A -> B.

(** The constant function [const a] always returns [a]. *)

Definition const {A B} (a : A) := fun _ : B => a.

(** The [flip] combinator reverses the first two arguments of a function. *)

Definition flip {A B C} (f : A -> B -> C) x y := f y x.

(** Application as a combinator. *)

Definition apply {A B} (f : A -> B) (x : A) := f x.

(** Curryfication of [prod] is defined in [Logic.Datatypes]. *)

Implicit Arguments prod_curry [[A] [B] [C]].
Implicit Arguments prod_uncurry [[A] [B] [C]].