blob: 7cef5c5ad810812e0f92103909176c881057483d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** Standard functions and combinators.
Proofs about them require functional extensionality and can be found
in [Combinators].
Author: Matthieu Sozeau
Institution: LRI, CNRS UMR 8623 - University Paris Sud
*)
(** The polymorphic identity function is defined in [Datatypes]. *)
Arguments id {A} x.
(** Function composition. *)
Definition compose {A B C} (g : B -> C) (f : A -> B) :=
fun x : A => g (f x).
Hint Unfold compose.
Notation " g ∘ f " := (compose g f)
(at level 40, left associativity) : program_scope.
Open Local Scope program_scope.
(** The non-dependent function space between [A] and [B]. *)
Definition arrow (A B : Type) := A -> B.
(** Logical implication. *)
Definition impl (A B : Prop) : Prop := A -> B.
(** The constant function [const a] always returns [a]. *)
Definition const {A B} (a : A) := fun _ : B => a.
(** The [flip] combinator reverses the first two arguments of a function. *)
Definition flip {A B C} (f : A -> B -> C) x y := f y x.
(** Application as a combinator. *)
Definition apply {A B} (f : A -> B) (x : A) := f x.
(** Curryfication of [prod] is defined in [Logic.Datatypes]. *)
Arguments prod_curry {A B C} f p.
Arguments prod_uncurry {A B C} f x y.
|