1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
|
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import BinPos Le Lt Gt Plus Mult Minus Compare_dec.
(** Properties of the injection from binary positive numbers
to Peano natural numbers *)
(** Original development by Pierre Crégut, CNET, Lannion, France *)
Local Open Scope positive_scope.
Local Open Scope nat_scope.
Module Pos2Nat.
Import Pos.
(** [Pos.to_nat] is a morphism for successor, addition, multiplication *)
Lemma inj_succ p : to_nat (succ p) = S (to_nat p).
Proof.
unfold to_nat. rewrite iter_op_succ. trivial.
apply plus_assoc.
Qed.
Theorem inj_add p q : to_nat (p + q) = to_nat p + to_nat q.
Proof.
revert q. induction p using peano_ind; intros q.
now rewrite add_1_l, inj_succ.
now rewrite add_succ_l, !inj_succ, IHp.
Qed.
Theorem inj_mul p q : to_nat (p * q) = to_nat p * to_nat q.
Proof.
revert q. induction p using peano_ind; simpl; intros; trivial.
now rewrite mul_succ_l, inj_add, IHp, inj_succ.
Qed.
(** Mapping of xH, xO and xI through [Pos.to_nat] *)
Lemma inj_1 : to_nat 1 = 1.
Proof.
reflexivity.
Qed.
Lemma inj_xO p : to_nat (xO p) = 2 * to_nat p.
Proof.
exact (inj_mul 2 p).
Qed.
Lemma inj_xI p : to_nat (xI p) = S (2 * to_nat p).
Proof.
now rewrite xI_succ_xO, inj_succ, inj_xO.
Qed.
(** [Pos.to_nat] maps to the strictly positive subset of [nat] *)
Lemma is_succ : forall p, exists n, to_nat p = S n.
Proof.
induction p using peano_ind.
now exists 0.
destruct IHp as (n,Hn). exists (S n). now rewrite inj_succ, Hn.
Qed.
(** [Pos.to_nat] is strictly positive *)
Lemma is_pos p : 0 < to_nat p.
Proof.
destruct (is_succ p) as (n,->). auto with arith.
Qed.
(** [Pos.to_nat] is a bijection between [positive] and
non-zero [nat], with [Pos.of_nat] as reciprocal.
See [Nat2Pos.id] below for the dual equation. *)
Theorem id p : of_nat (to_nat p) = p.
Proof.
induction p using peano_ind. trivial.
rewrite inj_succ. rewrite <- IHp at 2.
now destruct (is_succ p) as (n,->).
Qed.
(** [Pos.to_nat] is hence injective *)
Lemma inj p q : to_nat p = to_nat q -> p = q.
Proof.
intros H. now rewrite <- (id p), <- (id q), H.
Qed.
Lemma inj_iff p q : to_nat p = to_nat q <-> p = q.
Proof.
split. apply inj. intros; now subst.
Qed.
(** [Pos.to_nat] is a morphism for comparison *)
Lemma inj_compare p q : (p ?= q) = nat_compare (to_nat p) (to_nat q).
Proof.
revert q. induction p as [ |p IH] using peano_ind; intros q.
destruct (succ_pred_or q) as [Hq|Hq]; [now subst|].
rewrite <- Hq, lt_1_succ, inj_succ, inj_1, nat_compare_S.
symmetry. apply nat_compare_lt, is_pos.
destruct (succ_pred_or q) as [Hq|Hq]; [subst|].
rewrite compare_antisym, lt_1_succ, inj_succ. simpl.
symmetry. apply nat_compare_gt, is_pos.
now rewrite <- Hq, 2 inj_succ, compare_succ_succ, IH.
Qed.
(** [Pos.to_nat] is a morphism for [lt], [le], etc *)
Lemma inj_lt p q : (p < q)%positive <-> to_nat p < to_nat q.
Proof.
unfold lt. now rewrite inj_compare, nat_compare_lt.
Qed.
Lemma inj_le p q : (p <= q)%positive <-> to_nat p <= to_nat q.
Proof.
unfold le. now rewrite inj_compare, nat_compare_le.
Qed.
Lemma inj_gt p q : (p > q)%positive <-> to_nat p > to_nat q.
Proof.
unfold gt. now rewrite inj_compare, nat_compare_gt.
Qed.
Lemma inj_ge p q : (p >= q)%positive <-> to_nat p >= to_nat q.
Proof.
unfold ge. now rewrite inj_compare, nat_compare_ge.
Qed.
(** [Pos.to_nat] is a morphism for subtraction *)
Theorem inj_sub p q : (q < p)%positive ->
to_nat (p - q) = to_nat p - to_nat q.
Proof.
intro H; apply plus_reg_l with (to_nat q); rewrite le_plus_minus_r.
now rewrite <- inj_add, add_comm, sub_add.
now apply lt_le_weak, inj_lt.
Qed.
Theorem inj_sub_max p q :
to_nat (p - q) = Peano.max 1 (to_nat p - to_nat q).
Proof.
destruct (ltb_spec q p).
rewrite <- inj_sub by trivial.
now destruct (is_succ (p - q)) as (m,->).
rewrite sub_le by trivial.
replace (to_nat p - to_nat q) with 0; trivial.
apply le_n_0_eq.
rewrite <- (minus_diag (to_nat p)).
now apply minus_le_compat_l, inj_le.
Qed.
Theorem inj_pred p : (1 < p)%positive ->
to_nat (pred p) = Peano.pred (to_nat p).
Proof.
intros H. now rewrite <- Pos.sub_1_r, inj_sub, pred_of_minus.
Qed.
Theorem inj_pred_max p :
to_nat (pred p) = Peano.max 1 (Peano.pred (to_nat p)).
Proof.
rewrite <- Pos.sub_1_r, pred_of_minus. apply inj_sub_max.
Qed.
(** [Pos.to_nat] and other operations *)
Lemma inj_min p q :
to_nat (min p q) = Peano.min (to_nat p) (to_nat q).
Proof.
unfold min. rewrite inj_compare.
case nat_compare_spec; intros H; symmetry.
apply Peano.min_l. now rewrite H.
now apply Peano.min_l, lt_le_weak.
now apply Peano.min_r, lt_le_weak.
Qed.
Lemma inj_max p q :
to_nat (max p q) = Peano.max (to_nat p) (to_nat q).
Proof.
unfold max. rewrite inj_compare.
case nat_compare_spec; intros H; symmetry.
apply Peano.max_r. now rewrite H.
now apply Peano.max_r, lt_le_weak.
now apply Peano.max_l, lt_le_weak.
Qed.
Theorem inj_iter :
forall p {A} (f:A->A) (x:A),
Pos.iter p f x = nat_iter (to_nat p) f x.
Proof.
induction p using peano_ind. trivial.
intros. rewrite inj_succ, iter_succ. simpl. now f_equal.
Qed.
End Pos2Nat.
Module Nat2Pos.
(** [Pos.of_nat] is a bijection between non-zero [nat] and
[positive], with [Pos.to_nat] as reciprocal.
See [Pos2Nat.id] above for the dual equation. *)
Theorem id (n:nat) : n<>0 -> Pos.to_nat (Pos.of_nat n) = n.
Proof.
induction n as [|n H]; trivial. now destruct 1.
intros _. simpl. destruct n. trivial.
rewrite Pos2Nat.inj_succ. f_equal. now apply H.
Qed.
Theorem id_max (n:nat) : Pos.to_nat (Pos.of_nat n) = max 1 n.
Proof.
destruct n. trivial. now rewrite id.
Qed.
(** [Pos.of_nat] is hence injective for non-zero numbers *)
Lemma inj (n m : nat) : n<>0 -> m<>0 -> Pos.of_nat n = Pos.of_nat m -> n = m.
Proof.
intros Hn Hm H. now rewrite <- (id n), <- (id m), H.
Qed.
Lemma inj_iff (n m : nat) : n<>0 -> m<>0 ->
(Pos.of_nat n = Pos.of_nat m <-> n = m).
Proof.
split. now apply inj. intros; now subst.
Qed.
(** Usual operations are morphisms with respect to [Pos.of_nat]
for non-zero numbers. *)
Lemma inj_succ (n:nat) : n<>0 -> Pos.of_nat (S n) = Pos.succ (Pos.of_nat n).
Proof.
intro H. apply Pos2Nat.inj. now rewrite Pos2Nat.inj_succ, !id.
Qed.
Lemma inj_pred (n:nat) : Pos.of_nat (pred n) = Pos.pred (Pos.of_nat n).
Proof.
destruct n as [|[|n]]; trivial. simpl. now rewrite Pos.pred_succ.
Qed.
Lemma inj_add (n m : nat) : n<>0 -> m<>0 ->
Pos.of_nat (n+m) = (Pos.of_nat n + Pos.of_nat m)%positive.
Proof.
intros Hn Hm. apply Pos2Nat.inj.
rewrite Pos2Nat.inj_add, !id; trivial.
intros H. destruct n. now destruct Hn. now simpl in H.
Qed.
Lemma inj_mul (n m : nat) : n<>0 -> m<>0 ->
Pos.of_nat (n*m) = (Pos.of_nat n * Pos.of_nat m)%positive.
Proof.
intros Hn Hm. apply Pos2Nat.inj.
rewrite Pos2Nat.inj_mul, !id; trivial.
intros H. apply mult_is_O in H. destruct H. now elim Hn. now elim Hm.
Qed.
Lemma inj_compare (n m : nat) : n<>0 -> m<>0 ->
nat_compare n m = (Pos.of_nat n ?= Pos.of_nat m).
Proof.
intros Hn Hm. rewrite Pos2Nat.inj_compare, !id; trivial.
Qed.
Lemma inj_sub (n m : nat) : m<>0 ->
Pos.of_nat (n-m) = (Pos.of_nat n - Pos.of_nat m)%positive.
Proof.
intros Hm.
apply Pos2Nat.inj.
rewrite Pos2Nat.inj_sub_max.
rewrite (id m) by trivial. rewrite !id_max.
destruct n, m; trivial.
Qed.
Lemma inj_min (n m : nat) :
Pos.of_nat (min n m) = Pos.min (Pos.of_nat n) (Pos.of_nat m).
Proof.
destruct n as [|n]. simpl. symmetry. apply Pos.min_l, Pos.le_1_l.
destruct m as [|m]. simpl. symmetry. apply Pos.min_r, Pos.le_1_l.
unfold Pos.min. rewrite <- inj_compare by easy.
case nat_compare_spec; intros H; f_equal; apply min_l || apply min_r.
rewrite H; auto. now apply lt_le_weak. now apply lt_le_weak.
Qed.
Lemma inj_max (n m : nat) :
Pos.of_nat (max n m) = Pos.max (Pos.of_nat n) (Pos.of_nat m).
Proof.
destruct n as [|n]. simpl. symmetry. apply Pos.max_r, Pos.le_1_l.
destruct m as [|m]. simpl. symmetry. apply Pos.max_l, Pos.le_1_l.
unfold Pos.max. rewrite <- inj_compare by easy.
case nat_compare_spec; intros H; f_equal; apply max_l || apply max_r.
rewrite H; auto. now apply lt_le_weak. now apply lt_le_weak.
Qed.
End Nat2Pos.
(**********************************************************************)
(** Properties of the shifted injection from Peano natural numbers
to binary positive numbers *)
Module Pos2SuccNat.
(** Composition of [Pos.to_nat] and [Pos.of_succ_nat] is successor
on [positive] *)
Theorem id_succ p : Pos.of_succ_nat (Pos.to_nat p) = Pos.succ p.
Proof.
rewrite Pos.of_nat_succ, <- Pos2Nat.inj_succ. apply Pos2Nat.id.
Qed.
(** Composition of [Pos.to_nat], [Pos.of_succ_nat] and [Pos.pred]
is identity on [positive] *)
Theorem pred_id p : Pos.pred (Pos.of_succ_nat (Pos.to_nat p)) = p.
Proof.
now rewrite id_succ, Pos.pred_succ.
Qed.
End Pos2SuccNat.
Module SuccNat2Pos.
(** Composition of [Pos.of_succ_nat] and [Pos.to_nat] is successor on [nat] *)
Theorem id_succ (n:nat) : Pos.to_nat (Pos.of_succ_nat n) = S n.
Proof.
rewrite Pos.of_nat_succ. now apply Nat2Pos.id.
Qed.
Theorem pred_id (n:nat) : pred (Pos.to_nat (Pos.of_succ_nat n)) = n.
Proof.
now rewrite id_succ.
Qed.
(** [Pos.of_succ_nat] is hence injective *)
Lemma inj (n m : nat) : Pos.of_succ_nat n = Pos.of_succ_nat m -> n = m.
Proof.
intro H. apply (f_equal Pos.to_nat) in H. rewrite !id_succ in H.
now injection H.
Qed.
Lemma inj_iff (n m : nat) : Pos.of_succ_nat n = Pos.of_succ_nat m <-> n = m.
Proof.
split. apply inj. intros; now subst.
Qed.
(** Another formulation *)
Theorem inv n p : Pos.to_nat p = S n -> Pos.of_succ_nat n = p.
Proof.
intros H. apply Pos2Nat.inj. now rewrite id_succ.
Qed.
(** Successor and comparison are morphisms with respect to
[Pos.of_succ_nat] *)
Lemma inj_succ n : Pos.of_succ_nat (S n) = Pos.succ (Pos.of_succ_nat n).
Proof.
apply Pos2Nat.inj. now rewrite Pos2Nat.inj_succ, !id_succ.
Qed.
Lemma inj_compare n m :
nat_compare n m = (Pos.of_succ_nat n ?= Pos.of_succ_nat m).
Proof.
rewrite Pos2Nat.inj_compare, !id_succ; trivial.
Qed.
(** Other operations, for instance [Pos.add] and [plus] aren't
directly related this way (we would need to compensate for
the successor hidden in [Pos.of_succ_nat] *)
End SuccNat2Pos.
(** For compatibility, old names and old-style lemmas *)
Notation Psucc_S := Pos2Nat.inj_succ (compat "8.3").
Notation Pplus_plus := Pos2Nat.inj_add (compat "8.3").
Notation Pmult_mult := Pos2Nat.inj_mul (compat "8.3").
Notation Pcompare_nat_compare := Pos2Nat.inj_compare (compat "8.3").
Notation nat_of_P_xH := Pos2Nat.inj_1 (compat "8.3").
Notation nat_of_P_xO := Pos2Nat.inj_xO (compat "8.3").
Notation nat_of_P_xI := Pos2Nat.inj_xI (compat "8.3").
Notation nat_of_P_is_S := Pos2Nat.is_succ (compat "8.3").
Notation nat_of_P_pos := Pos2Nat.is_pos (compat "8.3").
Notation nat_of_P_inj_iff := Pos2Nat.inj_iff (compat "8.3").
Notation nat_of_P_inj := Pos2Nat.inj (compat "8.3").
Notation Plt_lt := Pos2Nat.inj_lt (compat "8.3").
Notation Pgt_gt := Pos2Nat.inj_gt (compat "8.3").
Notation Ple_le := Pos2Nat.inj_le (compat "8.3").
Notation Pge_ge := Pos2Nat.inj_ge (compat "8.3").
Notation Pminus_minus := Pos2Nat.inj_sub (compat "8.3").
Notation iter_nat_of_P := @Pos2Nat.inj_iter (compat "8.3").
Notation nat_of_P_of_succ_nat := SuccNat2Pos.id_succ (compat "8.3").
Notation P_of_succ_nat_of_P := Pos2SuccNat.id_succ (compat "8.3").
Notation nat_of_P_succ_morphism := Pos2Nat.inj_succ (compat "8.3").
Notation nat_of_P_plus_morphism := Pos2Nat.inj_add (compat "8.3").
Notation nat_of_P_mult_morphism := Pos2Nat.inj_mul (compat "8.3").
Notation nat_of_P_compare_morphism := Pos2Nat.inj_compare (compat "8.3").
Notation lt_O_nat_of_P := Pos2Nat.is_pos (compat "8.3").
Notation ZL4 := Pos2Nat.is_succ (compat "8.3").
Notation nat_of_P_o_P_of_succ_nat_eq_succ := SuccNat2Pos.id_succ (compat "8.3").
Notation P_of_succ_nat_o_nat_of_P_eq_succ := Pos2SuccNat.id_succ (compat "8.3").
Notation pred_o_P_of_succ_nat_o_nat_of_P_eq_id := Pos2SuccNat.pred_id (compat "8.3").
Lemma nat_of_P_minus_morphism p q :
Pos.compare_cont p q Eq = Gt ->
Pos.to_nat (p - q) = Pos.to_nat p - Pos.to_nat q.
Proof (fun H => Pos2Nat.inj_sub p q (Pos.gt_lt _ _ H)).
Lemma nat_of_P_lt_Lt_compare_morphism p q :
Pos.compare_cont p q Eq = Lt -> Pos.to_nat p < Pos.to_nat q.
Proof (proj1 (Pos2Nat.inj_lt p q)).
Lemma nat_of_P_gt_Gt_compare_morphism p q :
Pos.compare_cont p q Eq = Gt -> Pos.to_nat p > Pos.to_nat q.
Proof (proj1 (Pos2Nat.inj_gt p q)).
Lemma nat_of_P_lt_Lt_compare_complement_morphism p q :
Pos.to_nat p < Pos.to_nat q -> Pos.compare_cont p q Eq = Lt.
Proof (proj2 (Pos2Nat.inj_lt p q)).
Definition nat_of_P_gt_Gt_compare_complement_morphism p q :
Pos.to_nat p > Pos.to_nat q -> Pos.compare_cont p q Eq = Gt.
Proof (proj2 (Pos2Nat.inj_gt p q)).
(** Old intermediate results about [Pmult_nat] *)
Section ObsoletePmultNat.
Lemma Pmult_nat_mult : forall p n,
Pmult_nat p n = Pos.to_nat p * n.
Proof.
induction p; intros n; unfold Pos.to_nat; simpl.
f_equal. rewrite 2 IHp. rewrite <- mult_assoc.
f_equal. simpl. now rewrite <- plus_n_O.
rewrite 2 IHp. rewrite <- mult_assoc.
f_equal. simpl. now rewrite <- plus_n_O.
simpl. now rewrite <- plus_n_O.
Qed.
Lemma Pmult_nat_succ_morphism :
forall p n, Pmult_nat (Pos.succ p) n = n + Pmult_nat p n.
Proof.
intros. now rewrite !Pmult_nat_mult, Pos2Nat.inj_succ.
Qed.
Theorem Pmult_nat_l_plus_morphism :
forall p q n, Pmult_nat (p + q) n = Pmult_nat p n + Pmult_nat q n.
Proof.
intros. rewrite !Pmult_nat_mult, Pos2Nat.inj_add. apply mult_plus_distr_r.
Qed.
Theorem Pmult_nat_plus_carry_morphism :
forall p q n, Pmult_nat (Pos.add_carry p q) n = n + Pmult_nat (p + q) n.
Proof.
intros. now rewrite Pos.add_carry_spec, Pmult_nat_succ_morphism.
Qed.
Lemma Pmult_nat_r_plus_morphism :
forall p n, Pmult_nat p (n + n) = Pmult_nat p n + Pmult_nat p n.
Proof.
intros. rewrite !Pmult_nat_mult. apply mult_plus_distr_l.
Qed.
Lemma ZL6 : forall p, Pmult_nat p 2 = Pos.to_nat p + Pos.to_nat p.
Proof.
intros. rewrite Pmult_nat_mult, mult_comm. simpl. now rewrite <- plus_n_O.
Qed.
Lemma le_Pmult_nat : forall p n, n <= Pmult_nat p n.
Proof.
intros. rewrite Pmult_nat_mult.
apply le_trans with (1*n). now rewrite mult_1_l.
apply mult_le_compat_r. apply Pos2Nat.is_pos.
Qed.
End ObsoletePmultNat.
|