1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
(************************************************************************)
(*i $Id: QpMake.v 11027 2008-06-01 13:28:59Z letouzey $ i*)
Require Import Bool.
Require Import ZArith.
Require Import Znumtheory.
Require Import BigNumPrelude.
Require Import Arith.
Require Export BigN.
Require Export BigZ.
Require Import QArith.
Require Import Qcanon.
Require Import Qpower.
Require Import QMake_base.
Notation Nspec_lt := BigNAxiomsMod.NZOrdAxiomsMod.spec_lt.
Notation Nspec_le := BigNAxiomsMod.NZOrdAxiomsMod.spec_le.
Module Qp.
(** The notation of a rational number is either an integer x,
interpreted as itself or a pair (x,y) of an integer x and a naturel
number y interpreted as x/(y+1). *)
Definition t := q_type.
Definition zero: t := Qz BigZ.zero.
Definition one: t := Qz BigZ.one.
Definition minus_one: t := Qz BigZ.minus_one.
Definition of_Z x: t := Qz (BigZ.of_Z x).
Definition d_to_Z d := BigZ.Pos (BigN.succ d).
Definition of_Q q: t :=
match q with x # y =>
Qq (BigZ.of_Z x) (BigN.pred (BigN.of_N (Npos y)))
end.
Definition of_Qc q := of_Q (this q).
Definition to_Q (q: t) :=
match q with
Qz x => BigZ.to_Z x # 1
|Qq x y => BigZ.to_Z x # Z2P (BigN.to_Z (BigN.succ y))
end.
Definition to_Qc q := !!(to_Q q).
Notation "[[ x ]]" := (to_Qc x).
Notation "[ x ]" := (to_Q x).
Theorem spec_to_Q: forall q: Q, [of_Q q] = q.
intros (x,y); simpl.
rewrite BigZ.spec_of_Z; auto.
rewrite BigN.spec_succ; simpl. simpl.
rewrite BigN.spec_pred; rewrite (BigN.spec_of_pos).
replace (Zpos y - 1 + 1)%Z with (Zpos y); auto; ring.
red; auto.
Qed.
Theorem spec_to_Qc: forall q, [[of_Qc q]] = q.
intros (x, Hx); unfold of_Qc, to_Qc; simpl.
apply Qc_decomp; simpl.
intros; rewrite spec_to_Q; auto.
Qed.
Definition opp (x: t): t :=
match x with
| Qz zx => Qz (BigZ.opp zx)
| Qq nx dx => Qq (BigZ.opp nx) dx
end.
Theorem spec_opp: forall q, ([opp q] = -[q])%Q.
intros [z | x y]; simpl.
rewrite BigZ.spec_opp; auto.
rewrite BigZ.spec_opp; auto.
Qed.
Theorem spec_oppc: forall q, [[opp q]] = -[[q]].
intros q; unfold Qcopp, to_Qc, Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
rewrite spec_opp.
rewrite <- Qred_opp.
rewrite Qred_involutive; auto.
Qed.
Definition compare (x y: t) :=
match x, y with
| Qz zx, Qz zy => BigZ.compare zx zy
| Qz zx, Qq ny dy => BigZ.compare (BigZ.mul zx (d_to_Z dy)) ny
| Qq nx dy, Qz zy => BigZ.compare nx (BigZ.mul zy (d_to_Z dy))
| Qq nx dx, Qq ny dy =>
BigZ.compare (BigZ.mul nx (d_to_Z dy)) (BigZ.mul ny (d_to_Z dx))
end.
Theorem spec_compare: forall q1 q2,
compare q1 q2 = ([q1] ?= [q2])%Q.
intros [z1 | x1 y1] [z2 | x2 y2]; unfold Qcompare; simpl.
repeat rewrite Zmult_1_r.
generalize (BigZ.spec_compare z1 z2); case BigZ.compare; intros H; auto.
rewrite H; rewrite Zcompare_refl; auto.
rewrite Zmult_1_r.
rewrite BigN.spec_succ.
rewrite Z2P_correct; auto with zarith.
2: generalize (BigN.spec_pos y2); auto with zarith.
generalize (BigZ.spec_compare (z1 * d_to_Z y2) x2)%bigZ; case BigZ.compare;
intros H; rewrite <- H.
rewrite BigZ.spec_mul; unfold d_to_Z; simpl.
rewrite BigN.spec_succ.
rewrite Zcompare_refl; auto.
rewrite BigZ.spec_mul; unfold d_to_Z; simpl.
rewrite BigN.spec_succ; auto.
rewrite BigZ.spec_mul; unfold d_to_Z; simpl.
rewrite BigN.spec_succ; auto.
rewrite Zmult_1_r.
rewrite BigN.spec_succ.
rewrite Z2P_correct; auto with zarith.
2: generalize (BigN.spec_pos y1); auto with zarith.
generalize (BigZ.spec_compare x1 (z2 * d_to_Z y1))%bigZ; case BigZ.compare;
rewrite BigZ.spec_mul; unfold d_to_Z; simpl;
rewrite BigN.spec_succ; intros H; auto.
rewrite H; rewrite Zcompare_refl; auto.
repeat rewrite BigN.spec_succ; auto.
repeat rewrite Z2P_correct; auto with zarith.
2: generalize (BigN.spec_pos y1); auto with zarith.
2: generalize (BigN.spec_pos y2); auto with zarith.
generalize (BigZ.spec_compare (x1 * d_to_Z y2)
(x2 * d_to_Z y1))%bigZ; case BigZ.compare;
repeat rewrite BigZ.spec_mul; unfold d_to_Z; simpl;
repeat rewrite BigN.spec_succ; intros H; auto.
rewrite H; auto.
rewrite Zcompare_refl; auto.
Qed.
Theorem spec_comparec: forall q1 q2,
compare q1 q2 = ([[q1]] ?= [[q2]]).
unfold Qccompare, to_Qc.
intros q1 q2; rewrite spec_compare; simpl.
apply Qcompare_comp; apply Qeq_sym; apply Qred_correct.
Qed.
(* Inv d > 0, Pour la forme normal unique on veut d > 1 *)
Definition norm n d: t :=
if BigZ.eq_bool n BigZ.zero then zero
else
let gcd := BigN.gcd (BigZ.to_N n) d in
if BigN.eq_bool gcd BigN.one then Qq n (BigN.pred d)
else
let n := BigZ.div n (BigZ.Pos gcd) in
let d := BigN.div d gcd in
if BigN.eq_bool d BigN.one then Qz n
else Qq n (BigN.pred d).
Theorem spec_norm: forall n q,
((0 < BigN.to_Z q)%Z -> [norm n q] == [Qq n (BigN.pred q)])%Q.
intros p q; unfold norm; intros Hq.
assert (Hp := BigN.spec_pos (BigZ.to_N p)).
match goal with |- context[BigZ.eq_bool ?X ?Y] =>
generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
end; auto; rewrite BigZ.spec_0; intros H1.
red; simpl; rewrite H1; ring.
case (Zle_lt_or_eq _ _ Hp); clear Hp; intros Hp.
case (Zle_lt_or_eq _ _
(Zgcd_is_pos (BigN.to_Z (BigZ.to_N p)) (BigN.to_Z q))); intros H4.
2: generalize Hq; rewrite (Zgcd_inv_0_r _ _ (sym_equal H4)); auto with zarith.
2: red; simpl; auto with zarith.
match goal with |- context[BigN.eq_bool ?X ?Y] =>
generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
end; auto; rewrite BigN.spec_1; intros H2.
apply Qeq_refl.
match goal with |- context[BigN.eq_bool ?X ?Y] =>
generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
end; auto; rewrite BigN.spec_1.
red; simpl.
rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
rewrite Zmult_1_r.
rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
rewrite Z2P_correct; auto with zarith.
rewrite spec_to_N; intros; rewrite Zgcd_div_swap; auto.
rewrite H; ring.
intros H3.
red; simpl.
rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
assert (F: (0 < BigN.to_Z (q / BigN.gcd (BigZ.to_N p) q)%bigN)%Z).
rewrite BigN.spec_div; auto with zarith.
rewrite BigN.spec_gcd.
apply Zgcd_div_pos; auto.
rewrite BigN.spec_gcd; auto.
rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
rewrite Z2P_correct; auto.
rewrite Z2P_correct; auto.
rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
rewrite spec_to_N; apply Zgcd_div_swap; auto.
case H1; rewrite spec_to_N; rewrite <- Hp; ring.
Qed.
Theorem spec_normc: forall n q,
(0 < BigN.to_Z q)%Z -> [[norm n q]] = [[Qq n (BigN.pred q)]].
intros n q H; unfold to_Qc, Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete; apply spec_norm; auto.
Qed.
Definition add (x y: t): t :=
match x, y with
| Qz zx, Qz zy => Qz (BigZ.add zx zy)
| Qz zx, Qq ny dy => Qq (BigZ.add (BigZ.mul zx (d_to_Z dy)) ny) dy
| Qq nx dx, Qz zy => Qq (BigZ.add nx (BigZ.mul zy (d_to_Z dx))) dx
| Qq nx dx, Qq ny dy =>
let dx' := BigN.succ dx in
let dy' := BigN.succ dy in
let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy')) (BigZ.mul ny (BigZ.Pos dx')) in
let d := BigN.pred (BigN.mul dx' dy') in
Qq n d
end.
Theorem spec_d_to_Z: forall dy,
(BigZ.to_Z (d_to_Z dy) = BigN.to_Z dy + 1)%Z.
intros dy; unfold d_to_Z; simpl.
rewrite BigN.spec_succ; auto.
Qed.
Theorem spec_succ_pos: forall p,
(0 < BigN.to_Z (BigN.succ p))%Z.
intros p; rewrite BigN.spec_succ;
generalize (BigN.spec_pos p); auto with zarith.
Qed.
Theorem spec_add x y: ([add x y] == [x] + [y])%Q.
intros [x | nx dx] [y | ny dy]; unfold Qplus; simpl.
rewrite BigZ.spec_add; repeat rewrite Zmult_1_r; auto.
apply Qeq_refl; auto.
assert (F1:= BigN.spec_pos dy).
rewrite Zmult_1_r.
simpl; rewrite Z2P_correct; rewrite BigN.spec_succ; auto with zarith.
rewrite BigZ.spec_add; rewrite BigZ.spec_mul.
rewrite spec_d_to_Z; apply Qeq_refl.
assert (F1:= BigN.spec_pos dx).
rewrite Zmult_1_r; rewrite Pmult_1_r.
simpl; rewrite Z2P_correct; rewrite BigN.spec_succ; auto with zarith.
rewrite BigZ.spec_add; rewrite BigZ.spec_mul.
rewrite spec_d_to_Z; apply Qeq_refl.
repeat rewrite BigN.spec_succ.
assert (Fx: (0 < BigN.to_Z dx + 1)%Z).
generalize (BigN.spec_pos dx); auto with zarith.
assert (Fy: (0 < BigN.to_Z dy + 1)%Z).
generalize (BigN.spec_pos dy); auto with zarith.
repeat rewrite BigN.spec_pred.
rewrite BigZ.spec_add; repeat rewrite BigN.spec_mul;
repeat rewrite BigN.spec_succ.
assert (tmp: forall x, (x-1+1 = x)%Z); [intros; ring | rewrite tmp; clear tmp].
repeat rewrite Z2P_correct; auto.
repeat rewrite BigZ.spec_mul; simpl.
repeat rewrite BigN.spec_succ.
assert (tmp:
(forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
rewrite tmp; auto; apply Qeq_refl.
rewrite BigN.spec_mul; repeat rewrite BigN.spec_succ; auto with zarith.
apply Zmult_lt_0_compat; auto.
Qed.
Theorem spec_addc x y: [[add x y]] = [[x]] + [[y]].
intros x y; unfold to_Qc.
apply trans_equal with (!! ([x] + [y])).
unfold Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete; apply spec_add.
unfold Qcplus, Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete.
apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
Qed.
Definition add_norm (x y: t): t :=
match x, y with
| Qz zx, Qz zy => Qz (BigZ.add zx zy)
| Qz zx, Qq ny dy =>
let d := BigN.succ dy in
norm (BigZ.add (BigZ.mul zx (BigZ.Pos d)) ny) d
| Qq nx dx, Qz zy =>
let d := BigN.succ dx in
norm (BigZ.add (BigZ.mul zy (BigZ.Pos d)) nx) d
| Qq nx dx, Qq ny dy =>
let dx' := BigN.succ dx in
let dy' := BigN.succ dy in
let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy')) (BigZ.mul ny (BigZ.Pos dx')) in
let d := BigN.mul dx' dy' in
norm n d
end.
Theorem spec_add_norm x y: ([add_norm x y] == [x] + [y])%Q.
intros x y; rewrite <- spec_add.
unfold add_norm, add; case x; case y.
intros; apply Qeq_refl.
intros p1 n p2.
match goal with |- [norm ?X ?Y] == _ =>
apply Qeq_trans with ([Qq X (BigN.pred Y)]);
[apply spec_norm | idtac]
end.
rewrite BigN.spec_succ; generalize (BigN.spec_pos n); auto with zarith.
simpl.
repeat rewrite BigZ.spec_add.
repeat rewrite BigZ.spec_mul; simpl.
rewrite BigN.succ_pred; try apply Qeq_refl; apply lt_0_succ.
intros p1 n p2.
match goal with |- [norm ?X ?Y] == _ =>
apply Qeq_trans with ([Qq X (BigN.pred Y)]);
[apply spec_norm | idtac]
end.
rewrite BigN.spec_succ; generalize (BigN.spec_pos p2); auto with zarith.
simpl.
repeat rewrite BigZ.spec_add.
repeat rewrite BigZ.spec_mul; simpl.
rewrite BinInt.Zplus_comm.
rewrite BigN.succ_pred; try apply Qeq_refl; apply lt_0_succ.
intros p1 q1 p2 q2.
match goal with |- [norm ?X ?Y] == _ =>
apply Qeq_trans with ([Qq X (BigN.pred Y)]);
[apply spec_norm | idtac]
end; try apply Qeq_refl.
rewrite BigN.spec_mul.
apply Zmult_lt_0_compat; apply spec_succ_pos.
Qed.
Theorem spec_add_normc x y: [[add_norm x y]] = [[x]] + [[y]].
intros x y; unfold to_Qc.
apply trans_equal with (!! ([x] + [y])).
unfold Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete; apply spec_add_norm.
unfold Qcplus, Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete.
apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
Qed.
Definition sub (x y: t): t := add x (opp y).
Theorem spec_sub x y: ([sub x y] == [x] - [y])%Q.
intros x y; unfold sub; rewrite spec_add.
rewrite spec_opp; ring.
Qed.
Theorem spec_subc x y: [[sub x y]] = [[x]] - [[y]].
intros x y; unfold sub; rewrite spec_addc.
rewrite spec_oppc; ring.
Qed.
Definition sub_norm x y := add_norm x (opp y).
Theorem spec_sub_norm x y: ([sub_norm x y] == [x] - [y])%Q.
intros x y; unfold sub_norm; rewrite spec_add_norm.
rewrite spec_opp; ring.
Qed.
Theorem spec_sub_normc x y: [[sub_norm x y]] = [[x]] - [[y]].
intros x y; unfold sub_norm; rewrite spec_add_normc.
rewrite spec_oppc; ring.
Qed.
Definition mul (x y: t): t :=
match x, y with
| Qz zx, Qz zy => Qz (BigZ.mul zx zy)
| Qz zx, Qq ny dy => Qq (BigZ.mul zx ny) dy
| Qq nx dx, Qz zy => Qq (BigZ.mul nx zy) dx
| Qq nx dx, Qq ny dy =>
Qq (BigZ.mul nx ny) (BigN.pred (BigN.mul (BigN.succ dx) (BigN.succ dy)))
end.
Theorem spec_mul x y: ([mul x y] == [x] * [y])%Q.
intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl.
rewrite BigZ.spec_mul; repeat rewrite Zmult_1_r; auto.
apply Qeq_refl; auto.
rewrite BigZ.spec_mul; apply Qeq_refl.
rewrite BigZ.spec_mul; rewrite Pmult_1_r; auto.
apply Qeq_refl; auto.
assert (F1:= spec_succ_pos dx).
assert (F2:= spec_succ_pos dy).
rewrite BigN.succ_pred.
rewrite BigN.spec_mul; rewrite BigZ.spec_mul.
assert (tmp:
(forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
rewrite tmp; auto; apply Qeq_refl.
rewrite Nspec_lt, BigN.spec_0, BigN.spec_mul; auto.
apply Zmult_lt_0_compat; apply spec_succ_pos.
Qed.
Theorem spec_mulc x y: [[mul x y]] = [[x]] * [[y]].
intros x y; unfold to_Qc.
apply trans_equal with (!! ([x] * [y])).
unfold Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete; apply spec_mul.
unfold Qcmult, Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete.
apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
Qed.
Definition mul_norm (x y: t): t :=
match x, y with
| Qz zx, Qz zy => Qz (BigZ.mul zx zy)
| Qz zx, Qq ny dy =>
if BigZ.eq_bool zx BigZ.zero then zero
else
let d := BigN.succ dy in
let gcd := BigN.gcd (BigZ.to_N zx) d in
if BigN.eq_bool gcd BigN.one then Qq (BigZ.mul zx ny) dy
else
let zx := BigZ.div zx (BigZ.Pos gcd) in
let d := BigN.div d gcd in
if BigN.eq_bool d BigN.one then Qz (BigZ.mul zx ny)
else Qq (BigZ.mul zx ny) (BigN.pred d)
| Qq nx dx, Qz zy =>
if BigZ.eq_bool zy BigZ.zero then zero
else
let d := BigN.succ dx in
let gcd := BigN.gcd (BigZ.to_N zy) d in
if BigN.eq_bool gcd BigN.one then Qq (BigZ.mul zy nx) dx
else
let zy := BigZ.div zy (BigZ.Pos gcd) in
let d := BigN.div d gcd in
if BigN.eq_bool d BigN.one then Qz (BigZ.mul zy nx)
else Qq (BigZ.mul zy nx) (BigN.pred d)
| Qq nx dx, Qq ny dy =>
norm (BigZ.mul nx ny) (BigN.mul (BigN.succ dx) (BigN.succ dy))
end.
Theorem spec_mul_norm x y: ([mul_norm x y] == [x] * [y])%Q.
intros x y; rewrite <- spec_mul.
unfold mul_norm, mul; case x; case y.
intros; apply Qeq_refl.
intros p1 n p2.
match goal with |- context[BigZ.eq_bool ?X ?Y] =>
generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H.
rewrite BigZ.spec_mul; rewrite H; red; auto.
assert (F: (0 < BigN.to_Z (BigZ.to_N p2))%Z).
case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p2))); auto.
intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring.
assert (F1: (0 < BigN.to_Z (BigN.succ n))%Z).
rewrite BigN.spec_succ; generalize (BigN.spec_pos n); auto with zarith.
assert (F2: (0 < Zgcd (BigN.to_Z (BigZ.to_N p2)) (BigN.to_Z (BigN.succ n)))%Z).
case (Zle_lt_or_eq _ _ (Zgcd_is_pos (BigN.to_Z (BigZ.to_N p2))
(BigN.to_Z (BigN.succ n)))); intros H3; auto.
generalize F; rewrite (Zgcd_inv_0_l _ _ (sym_equal H3)); auto with zarith.
match goal with |- context[BigN.eq_bool ?X ?Y] =>
generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
end; rewrite BigN.spec_1; intros H1.
intros; apply Qeq_refl.
match goal with |- context[BigN.eq_bool ?X ?Y] =>
generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
end; rewrite BigN.spec_1.
rewrite BigN.spec_div; rewrite BigN.spec_gcd;
auto with zarith.
intros H2.
red; simpl.
repeat rewrite BigZ.spec_mul.
rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
rewrite Z2P_correct; auto with zarith.
rewrite spec_to_N.
rewrite Zmult_1_r; repeat rewrite <- Zmult_assoc.
rewrite (Zmult_comm (BigZ.to_Z p1)).
repeat rewrite Zmult_assoc.
rewrite Zgcd_div_swap; auto with zarith.
rewrite H2; ring.
intros H2.
red; simpl.
repeat rewrite BigZ.spec_mul.
rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
rewrite Z2P_correct; auto with zarith.
rewrite (spec_to_N p2).
case (Zle_lt_or_eq _ _
(BigN.spec_pos (BigN.succ n /
BigN.gcd (BigZ.to_N p2)
(BigN.succ n)))%bigN); intros F3.
rewrite BigN.succ_pred; auto with zarith.
rewrite Z2P_correct; auto with zarith.
rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
repeat rewrite <- Zmult_assoc.
rewrite (Zmult_comm (BigZ.to_Z p1)).
repeat rewrite Zmult_assoc.
rewrite Zgcd_div_swap; auto; try ring.
rewrite Nspec_lt, BigN.spec_0; auto.
apply False_ind; generalize F1.
rewrite (Zdivide_Zdiv_eq
(Zgcd (BigN.to_Z (BigZ.to_N p2)) (BigN.to_Z (BigN.succ n)))
(BigN.to_Z (BigN.succ n))); auto.
generalize F3; rewrite BigN.spec_div; rewrite BigN.spec_gcd;
auto with zarith.
intros HH; rewrite <- HH; auto with zarith.
assert (FF:= Zgcd_is_gcd (BigN.to_Z (BigZ.to_N p2))
(BigN.to_Z (BigN.succ n))); inversion FF; auto.
intros p1 p2 n.
match goal with |- context[BigZ.eq_bool ?X ?Y] =>
generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H.
rewrite BigZ.spec_mul; rewrite H; red; simpl; ring.
assert (F: (0 < BigN.to_Z (BigZ.to_N p1))%Z).
case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p1))); auto.
intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring.
assert (F1: (0 < BigN.to_Z (BigN.succ n))%Z).
rewrite BigN.spec_succ; generalize (BigN.spec_pos n); auto with zarith.
assert (F2: (0 < Zgcd (BigN.to_Z (BigZ.to_N p1)) (BigN.to_Z (BigN.succ n)))%Z).
case (Zle_lt_or_eq _ _ (Zgcd_is_pos (BigN.to_Z (BigZ.to_N p1))
(BigN.to_Z (BigN.succ n)))); intros H3; auto.
generalize F; rewrite (Zgcd_inv_0_l _ _ (sym_equal H3)); auto with zarith.
match goal with |- context[BigN.eq_bool ?X ?Y] =>
generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
end; rewrite BigN.spec_1; intros H1.
intros; repeat rewrite BigZ.spec_mul; rewrite Zmult_comm; apply Qeq_refl.
match goal with |- context[BigN.eq_bool ?X ?Y] =>
generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
end; rewrite BigN.spec_1.
rewrite BigN.spec_div; rewrite BigN.spec_gcd;
auto with zarith.
intros H2.
red; simpl.
repeat rewrite BigZ.spec_mul.
rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
rewrite Z2P_correct; auto with zarith.
rewrite spec_to_N.
rewrite Zmult_1_r; repeat rewrite <- Zmult_assoc.
rewrite (Zmult_comm (BigZ.to_Z p2)).
repeat rewrite Zmult_assoc.
rewrite Zgcd_div_swap; auto with zarith.
rewrite H2; ring.
intros H2.
red; simpl.
repeat rewrite BigZ.spec_mul.
rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
rewrite Z2P_correct; auto with zarith.
rewrite (spec_to_N p1).
case (Zle_lt_or_eq _ _
(BigN.spec_pos (BigN.succ n /
BigN.gcd (BigZ.to_N p1)
(BigN.succ n)))%bigN); intros F3.
rewrite BigN.succ_pred; auto with zarith.
rewrite Z2P_correct; auto with zarith.
rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
repeat rewrite <- Zmult_assoc.
rewrite (Zmult_comm (BigZ.to_Z p2)).
repeat rewrite Zmult_assoc.
rewrite Zgcd_div_swap; auto; try ring.
rewrite Nspec_lt, BigN.spec_0; auto.
apply False_ind; generalize F1.
rewrite (Zdivide_Zdiv_eq
(Zgcd (BigN.to_Z (BigZ.to_N p1)) (BigN.to_Z (BigN.succ n)))
(BigN.to_Z (BigN.succ n))); auto.
generalize F3; rewrite BigN.spec_div; rewrite BigN.spec_gcd;
auto with zarith.
intros HH; rewrite <- HH; auto with zarith.
assert (FF:= Zgcd_is_gcd (BigN.to_Z (BigZ.to_N p1))
(BigN.to_Z (BigN.succ n))); inversion FF; auto.
intros p1 n1 p2 n2.
match goal with |- [norm ?X ?Y] == _ =>
apply Qeq_trans with ([Qq X (BigN.pred Y)]);
[apply spec_norm | idtac]
end; try apply Qeq_refl.
rewrite BigN.spec_mul.
apply Zmult_lt_0_compat; rewrite BigN.spec_succ;
generalize (BigN.spec_pos n1) (BigN.spec_pos n2); auto with zarith.
Qed.
Theorem spec_mul_normc x y: [[mul_norm x y]] = [[x]] * [[y]].
intros x y; unfold to_Qc.
apply trans_equal with (!! ([x] * [y])).
unfold Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete; apply spec_mul_norm.
unfold Qcmult, Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete.
apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
Qed.
Definition inv (x: t): t :=
match x with
| Qz (BigZ.Pos n) =>
if BigN.eq_bool n BigN.zero then zero else Qq BigZ.one (BigN.pred n)
| Qz (BigZ.Neg n) =>
if BigN.eq_bool n BigN.zero then zero else Qq BigZ.minus_one (BigN.pred n)
| Qq (BigZ.Pos n) d =>
if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Pos (BigN.succ d)) (BigN.pred n)
| Qq (BigZ.Neg n) d =>
if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Neg (BigN.succ d)) (BigN.pred n)
end.
Theorem spec_inv x: ([inv x] == /[x])%Q.
intros [ [x | x] | [nx | nx] dx]; unfold inv.
match goal with |- context[BigN.eq_bool ?X ?Y] =>
generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
end; rewrite BigN.spec_0; intros H.
unfold zero, to_Q; rewrite BigZ.spec_0.
unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
assert (F: (0 < BigN.to_Z x)%Z).
case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith.
unfold to_Q; rewrite BigZ.spec_1.
rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
red; unfold Qinv; simpl.
generalize F; case BigN.to_Z; auto with zarith.
intros p Hp; discriminate Hp.
match goal with |- context[BigN.eq_bool ?X ?Y] =>
generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
end; rewrite BigN.spec_0; intros H.
unfold zero, to_Q; rewrite BigZ.spec_0.
unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
assert (F: (0 < BigN.to_Z x)%Z).
case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith.
red; unfold Qinv; simpl.
rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
generalize F; case BigN.to_Z; simpl; auto with zarith.
intros p Hp; discriminate Hp.
match goal with |- context[BigN.eq_bool ?X ?Y] =>
generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
end; rewrite BigN.spec_0; intros H.
unfold zero, to_Q; rewrite BigZ.spec_0.
unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
assert (F: (0 < BigN.to_Z nx)%Z).
case (Zle_lt_or_eq _ _ (BigN.spec_pos nx)); auto with zarith.
red; unfold Qinv; simpl.
rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
rewrite BigN.spec_succ; rewrite Z2P_correct; auto with zarith.
generalize F; case BigN.to_Z; auto with zarith.
intros p Hp; discriminate Hp.
generalize (BigN.spec_pos dx); auto with zarith.
match goal with |- context[BigN.eq_bool ?X ?Y] =>
generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
end; rewrite BigN.spec_0; intros H.
unfold zero, to_Q; rewrite BigZ.spec_0.
unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
assert (F: (0 < BigN.to_Z nx)%Z).
case (Zle_lt_or_eq _ _ (BigN.spec_pos nx)); auto with zarith.
red; unfold Qinv; simpl.
rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
rewrite BigN.spec_succ; rewrite Z2P_correct; auto with zarith.
generalize F; case BigN.to_Z; auto with zarith.
simpl; intros.
match goal with |- (?X = Zneg ?Y)%Z =>
replace (Zneg Y) with (-(Zpos Y))%Z;
try rewrite Z2P_correct; auto with zarith
end.
rewrite Zpos_mult_morphism;
rewrite Z2P_correct; auto with zarith; try ring.
generalize (BigN.spec_pos dx); auto with zarith.
intros p Hp; discriminate Hp.
generalize (BigN.spec_pos dx); auto with zarith.
Qed.
Theorem spec_invc x: [[inv x]] = /[[x]].
intros x; unfold to_Qc.
apply trans_equal with (!! (/[x])).
unfold Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete; apply spec_inv.
unfold Qcinv, Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete.
apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
Qed.
Definition inv_norm x :=
match x with
| Qz (BigZ.Pos n) =>
if BigN.eq_bool n BigN.zero then zero else
if BigN.eq_bool n BigN.one then x else Qq BigZ.one (BigN.pred n)
| Qz (BigZ.Neg n) =>
if BigN.eq_bool n BigN.zero then zero else
if BigN.eq_bool n BigN.one then x else Qq BigZ.minus_one (BigN.pred n)
| Qq (BigZ.Pos n) d => let d := BigN.succ d in
if BigN.eq_bool n BigN.zero then zero else
if BigN.eq_bool n BigN.one then Qz (BigZ.Pos d)
else Qq (BigZ.Pos d) (BigN.pred n)
| Qq (BigZ.Neg n) d => let d := BigN.succ d in
if BigN.eq_bool n BigN.zero then zero else
if BigN.eq_bool n BigN.one then Qz (BigZ.Neg d)
else Qq (BigZ.Neg d) (BigN.pred n)
end.
Theorem spec_inv_norm x: ([inv_norm x] == /[x])%Q.
intros x; rewrite <- spec_inv.
(case x; clear x); [intros [x | x] | intros nx dx];
unfold inv_norm, inv.
match goal with |- context[BigN.eq_bool ?X ?Y] =>
generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
end; rewrite BigN.spec_0; intros H.
apply Qeq_refl.
assert (F: (0 < BigN.to_Z x)%Z).
case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith.
match goal with |- context[BigN.eq_bool ?X ?Y] =>
generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
end; rewrite BigN.spec_1; intros H1.
red; simpl.
rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
rewrite Z2P_correct; try rewrite H1; auto with zarith.
apply Qeq_refl.
match goal with |- context[BigN.eq_bool ?X ?Y] =>
generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
end; rewrite BigN.spec_0; intros H.
apply Qeq_refl.
assert (F: (0 < BigN.to_Z x)%Z).
case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith.
match goal with |- context[BigN.eq_bool ?X ?Y] =>
generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
end; rewrite BigN.spec_1; intros H1.
red; simpl.
rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
rewrite Z2P_correct; try rewrite H1; auto with zarith.
apply Qeq_refl.
case nx; clear nx; intros nx.
match goal with |- context[BigN.eq_bool ?X ?Y] =>
generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
end; rewrite BigN.spec_0; intros H.
apply Qeq_refl.
match goal with |- context[BigN.eq_bool ?X ?Y] =>
generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
end; rewrite BigN.spec_1; intros H1.
red; simpl.
rewrite BigN.succ_pred; try rewrite H1; auto with zarith.
rewrite Nspec_lt, BigN.spec_0, H1; auto with zarith.
apply Qeq_refl.
match goal with |- context[BigN.eq_bool ?X ?Y] =>
generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
end; rewrite BigN.spec_0; intros H.
apply Qeq_refl.
match goal with |- context[BigN.eq_bool ?X ?Y] =>
generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
end; rewrite BigN.spec_1; intros H1.
red; simpl.
rewrite BigN.succ_pred; try rewrite H1; auto with zarith.
rewrite Nspec_lt, BigN.spec_0, H1; auto with zarith.
apply Qeq_refl.
Qed.
Definition div x y := mul x (inv y).
Theorem spec_div x y: ([div x y] == [x] / [y])%Q.
intros x y; unfold div; rewrite spec_mul; auto.
unfold Qdiv; apply Qmult_comp.
apply Qeq_refl.
apply spec_inv; auto.
Qed.
Theorem spec_divc x y: [[div x y]] = [[x]] / [[y]].
intros x y; unfold div; rewrite spec_mulc; auto.
unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
apply spec_invc; auto.
Qed.
Definition div_norm x y := mul_norm x (inv y).
Theorem spec_div_norm x y: ([div_norm x y] == [x] / [y])%Q.
intros x y; unfold div_norm; rewrite spec_mul_norm; auto.
unfold Qdiv; apply Qmult_comp.
apply Qeq_refl.
apply spec_inv; auto.
Qed.
Theorem spec_div_normc x y: [[div_norm x y]] = [[x]] / [[y]].
intros x y; unfold div_norm; rewrite spec_mul_normc; auto.
unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
apply spec_invc; auto.
Qed.
Definition square (x: t): t :=
match x with
| Qz zx => Qz (BigZ.square zx)
| Qq nx dx => Qq (BigZ.square nx) (BigN.pred (BigN.square (BigN.succ dx)))
end.
Theorem spec_square x: ([square x] == [x] ^ 2)%Q.
intros [ x | nx dx]; unfold square.
red; simpl; rewrite BigZ.spec_square; auto with zarith.
red; simpl; rewrite BigZ.spec_square; auto with zarith.
assert (F: (0 < BigN.to_Z (BigN.succ dx))%Z).
rewrite BigN.spec_succ;
case (Zle_lt_or_eq _ _ (BigN.spec_pos dx)); auto with zarith.
assert (F1 : (0 < BigN.to_Z (BigN.square (BigN.succ dx)))%Z).
rewrite BigN.spec_square; apply Zmult_lt_0_compat;
auto with zarith.
rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
rewrite Zpos_mult_morphism.
repeat rewrite Z2P_correct; auto with zarith.
repeat rewrite BigN.spec_succ; auto with zarith.
rewrite BigN.spec_square; auto with zarith.
repeat rewrite BigN.spec_succ; auto with zarith.
Qed.
Theorem spec_squarec x: [[square x]] = [[x]]^2.
intros x; unfold to_Qc.
apply trans_equal with (!! ([x]^2)).
unfold Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete; apply spec_square.
simpl Qcpower.
replace (!! [x] * 1) with (!![x]); try ring.
simpl.
unfold Qcmult, Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete.
apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
Qed.
Definition power_pos (x: t) p: t :=
match x with
| Qz zx => Qz (BigZ.power_pos zx p)
| Qq nx dx => Qq (BigZ.power_pos nx p) (BigN.pred (BigN.power_pos (BigN.succ dx) p))
end.
Theorem spec_power_pos x p: ([power_pos x p] == [x] ^ Zpos p)%Q.
Proof.
intros [x | nx dx] p; unfold power_pos.
unfold power_pos; red; simpl.
generalize (Qpower_decomp p (BigZ.to_Z x) 1).
unfold Qeq; simpl.
rewrite Zpower_pos_1_l; simpl Z2P.
rewrite Zmult_1_r.
intros H; rewrite H.
rewrite BigZ.spec_power_pos; simpl; ring.
assert (F1: (0 < BigN.to_Z (BigN.succ dx))%Z).
rewrite BigN.spec_succ;
generalize (BigN.spec_pos dx); auto with zarith.
assert (F2: (0 < BigN.to_Z (BigN.succ dx) ^ ' p)%Z).
unfold Zpower; apply Zpower_pos_pos; auto.
unfold power_pos; red; simpl.
rewrite BigN.succ_pred, BigN.spec_power_pos.
rewrite Z2P_correct; auto.
generalize (Qpower_decomp p (BigZ.to_Z nx)
(Z2P (BigN.to_Z (BigN.succ dx)))).
unfold Qeq; simpl.
repeat rewrite Z2P_correct; auto.
unfold Qeq; simpl; intros HH.
rewrite HH.
rewrite BigZ.spec_power_pos; simpl; ring.
rewrite Nspec_lt, BigN.spec_0, BigN.spec_power_pos; auto.
Qed.
Theorem spec_power_posc x p: [[power_pos x p]] = [[x]] ^ nat_of_P p.
intros x p; unfold to_Qc.
apply trans_equal with (!! ([x]^Zpos p)).
unfold Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete; apply spec_power_pos.
pattern p; apply Pind; clear p.
simpl; ring.
intros p Hrec.
rewrite nat_of_P_succ_morphism; simpl Qcpower.
rewrite <- Hrec.
unfold Qcmult, Q2Qc.
apply Qc_decomp; intros _ _;
unfold this.
apply Qred_complete.
assert (F: [x] ^ ' Psucc p == [x] * [x] ^ ' p).
simpl; case x; simpl; clear x Hrec.
intros x; simpl; repeat rewrite Qpower_decomp; simpl.
red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
rewrite Pplus_one_succ_l.
rewrite Zpower_pos_is_exp.
rewrite Zpower_pos_1_r; auto.
intros nx dx; simpl; repeat rewrite Qpower_decomp; simpl.
red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
rewrite Pplus_one_succ_l.
rewrite Zpower_pos_is_exp.
rewrite Zpower_pos_1_r; auto.
assert (F1: (0 < BigN.to_Z (BigN.succ dx))%Z).
rewrite BigN.spec_succ; generalize (BigN.spec_pos dx);
auto with zarith.
repeat rewrite Zpos_mult_morphism.
repeat rewrite Z2P_correct; auto.
2: apply Zpower_pos_pos; auto.
2: apply Zpower_pos_pos; auto.
rewrite Zpower_pos_is_exp.
rewrite Zpower_pos_1_r; auto.
rewrite F.
apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
Qed.
End Qp.
|