1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** * QMake : a generic efficient implementation of rational numbers *)
(** Initial authors : Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
Require Import BigNumPrelude ROmega.
Require Import QArith Qcanon Qpower Qminmax.
Require Import NSig ZSig QSig.
(** We will build rationals out of an implementation of integers [ZType]
for numerators and an implementation of natural numbers [NType] for
denominators. But first we will need some glue between [NType] and
[ZType]. *)
Module Type NType_ZType (NN:NType)(ZZ:ZType).
Parameter Z_of_N : NN.t -> ZZ.t.
Parameter spec_Z_of_N : forall n, ZZ.to_Z (Z_of_N n) = NN.to_Z n.
Parameter Zabs_N : ZZ.t -> NN.t.
Parameter spec_Zabs_N : forall z, NN.to_Z (Zabs_N z) = Z.abs (ZZ.to_Z z).
End NType_ZType.
Module Make (NN:NType)(ZZ:ZType)(Import NZ:NType_ZType NN ZZ) <: QType.
(** The notation of a rational number is either an integer x,
interpreted as itself or a pair (x,y) of an integer x and a natural
number y interpreted as x/y. The pairs (x,0) and (0,y) are all
interpreted as 0. *)
Inductive t_ :=
| Qz : ZZ.t -> t_
| Qq : ZZ.t -> NN.t -> t_.
Definition t := t_.
(** Specification with respect to [QArith] *)
Local Open Scope Q_scope.
Definition of_Z x: t := Qz (ZZ.of_Z x).
Definition of_Q (q:Q) : t :=
let (x,y) := q in
match y with
| 1%positive => Qz (ZZ.of_Z x)
| _ => Qq (ZZ.of_Z x) (NN.of_N (Npos y))
end.
Definition to_Q (q: t) :=
match q with
| Qz x => ZZ.to_Z x # 1
| Qq x y => if NN.eqb y NN.zero then 0
else ZZ.to_Z x # Z.to_pos (NN.to_Z y)
end.
Notation "[ x ]" := (to_Q x).
Lemma N_to_Z_pos :
forall x, (NN.to_Z x <> NN.to_Z NN.zero)%Z -> (0 < NN.to_Z x)%Z.
Proof.
intros x; rewrite NN.spec_0; generalize (NN.spec_pos x). romega.
Qed.
Ltac destr_zcompare := case Z.compare_spec; intros ?H.
Ltac destr_eqb :=
match goal with
| |- context [ZZ.eqb ?x ?y] =>
rewrite (ZZ.spec_eqb x y);
case (Z.eqb_spec (ZZ.to_Z x) (ZZ.to_Z y));
destr_eqb
| |- context [NN.eqb ?x ?y] =>
rewrite (NN.spec_eqb x y);
case (Z.eqb_spec (NN.to_Z x) (NN.to_Z y));
[ | let H:=fresh "H" in
try (intro H;generalize (N_to_Z_pos _ H); clear H)];
destr_eqb
| _ => idtac
end.
Hint Rewrite
Z.add_0_r Z.add_0_l Z.mul_0_r Z.mul_0_l Z.mul_1_r Z.mul_1_l
ZZ.spec_0 NN.spec_0 ZZ.spec_1 NN.spec_1 ZZ.spec_m1 ZZ.spec_opp
ZZ.spec_compare NN.spec_compare
ZZ.spec_add NN.spec_add ZZ.spec_mul NN.spec_mul ZZ.spec_div NN.spec_div
ZZ.spec_gcd NN.spec_gcd Z.gcd_abs_l Z.gcd_1_r
spec_Z_of_N spec_Zabs_N
: nz.
Ltac nzsimpl := autorewrite with nz in *.
Ltac qsimpl := try red; unfold to_Q; simpl; intros;
destr_eqb; simpl; nzsimpl; intros;
rewrite ?Z2Pos.id by auto;
auto.
Theorem strong_spec_of_Q: forall q: Q, [of_Q q] = q.
Proof.
intros(x,y); destruct y; simpl; rewrite ?ZZ.spec_of_Z; auto;
destr_eqb; now rewrite ?NN.spec_0, ?NN.spec_of_N.
Qed.
Theorem spec_of_Q: forall q: Q, [of_Q q] == q.
Proof.
intros; rewrite strong_spec_of_Q; red; auto.
Qed.
Definition eq x y := [x] == [y].
Definition zero: t := Qz ZZ.zero.
Definition one: t := Qz ZZ.one.
Definition minus_one: t := Qz ZZ.minus_one.
Lemma spec_0: [zero] == 0.
Proof.
simpl. nzsimpl. reflexivity.
Qed.
Lemma spec_1: [one] == 1.
Proof.
simpl. nzsimpl. reflexivity.
Qed.
Lemma spec_m1: [minus_one] == -(1).
Proof.
simpl. nzsimpl. reflexivity.
Qed.
Definition compare (x y: t) :=
match x, y with
| Qz zx, Qz zy => ZZ.compare zx zy
| Qz zx, Qq ny dy =>
if NN.eqb dy NN.zero then ZZ.compare zx ZZ.zero
else ZZ.compare (ZZ.mul zx (Z_of_N dy)) ny
| Qq nx dx, Qz zy =>
if NN.eqb dx NN.zero then ZZ.compare ZZ.zero zy
else ZZ.compare nx (ZZ.mul zy (Z_of_N dx))
| Qq nx dx, Qq ny dy =>
match NN.eqb dx NN.zero, NN.eqb dy NN.zero with
| true, true => Eq
| true, false => ZZ.compare ZZ.zero ny
| false, true => ZZ.compare nx ZZ.zero
| false, false => ZZ.compare (ZZ.mul nx (Z_of_N dy))
(ZZ.mul ny (Z_of_N dx))
end
end.
Theorem spec_compare: forall q1 q2, (compare q1 q2) = ([q1] ?= [q2]).
Proof.
intros [z1 | x1 y1] [z2 | x2 y2];
unfold Qcompare, compare; qsimpl.
Qed.
Definition lt n m := [n] < [m].
Definition le n m := [n] <= [m].
Definition min n m := match compare n m with Gt => m | _ => n end.
Definition max n m := match compare n m with Lt => m | _ => n end.
Lemma spec_min : forall n m, [min n m] == Qmin [n] [m].
Proof.
unfold min, Qmin, GenericMinMax.gmin. intros.
rewrite spec_compare; destruct Qcompare; auto with qarith.
Qed.
Lemma spec_max : forall n m, [max n m] == Qmax [n] [m].
Proof.
unfold max, Qmax, GenericMinMax.gmax. intros.
rewrite spec_compare; destruct Qcompare; auto with qarith.
Qed.
Definition eq_bool n m :=
match compare n m with Eq => true | _ => false end.
Theorem spec_eq_bool: forall x y, eq_bool x y = Qeq_bool [x] [y].
Proof.
intros. unfold eq_bool. rewrite spec_compare. reflexivity.
Qed.
(** [check_int] : is a reduced fraction [n/d] in fact a integer ? *)
Definition check_int n d :=
match NN.compare NN.one d with
| Lt => Qq n d
| Eq => Qz n
| Gt => zero (* n/0 encodes 0 *)
end.
Theorem strong_spec_check_int : forall n d, [check_int n d] = [Qq n d].
Proof.
intros; unfold check_int.
nzsimpl.
destr_zcompare.
simpl. rewrite <- H; qsimpl. congruence.
reflexivity.
qsimpl. exfalso; romega.
Qed.
(** Normalisation function *)
Definition norm n d : t :=
let gcd := NN.gcd (Zabs_N n) d in
match NN.compare NN.one gcd with
| Lt => check_int (ZZ.div n (Z_of_N gcd)) (NN.div d gcd)
| Eq => check_int n d
| Gt => zero (* gcd = 0 => both numbers are 0 *)
end.
Theorem spec_norm: forall n q, [norm n q] == [Qq n q].
Proof.
intros p q; unfold norm.
assert (Hp := NN.spec_pos (Zabs_N p)).
assert (Hq := NN.spec_pos q).
nzsimpl.
destr_zcompare.
(* Eq *)
rewrite strong_spec_check_int; reflexivity.
(* Lt *)
rewrite strong_spec_check_int.
qsimpl.
generalize (Zgcd_div_pos (ZZ.to_Z p) (NN.to_Z q)). romega.
replace (NN.to_Z q) with 0%Z in * by assumption.
rewrite Zdiv_0_l in *; auto with zarith.
apply Zgcd_div_swap0; romega.
(* Gt *)
qsimpl.
assert (H' : Z.gcd (ZZ.to_Z p) (NN.to_Z q) = 0%Z).
generalize (Z.gcd_nonneg (ZZ.to_Z p) (NN.to_Z q)); romega.
symmetry; apply (Z.gcd_eq_0_l _ _ H'); auto.
Qed.
Theorem strong_spec_norm : forall p q, [norm p q] = Qred [Qq p q].
Proof.
intros.
replace (Qred [Qq p q]) with (Qred [norm p q]) by
(apply Qred_complete; apply spec_norm).
symmetry; apply Qred_identity.
unfold norm.
assert (Hp := NN.spec_pos (Zabs_N p)).
assert (Hq := NN.spec_pos q).
nzsimpl.
destr_zcompare; rewrite ?strong_spec_check_int.
(* Eq *)
qsimpl.
(* Lt *)
qsimpl.
rewrite Zgcd_1_rel_prime.
destruct (Z_lt_le_dec 0 (NN.to_Z q)).
apply Zis_gcd_rel_prime; auto with zarith.
apply Zgcd_is_gcd.
replace (NN.to_Z q) with 0%Z in * by romega.
rewrite Zdiv_0_l in *; romega.
(* Gt *)
simpl; auto with zarith.
Qed.
(** Reduction function : producing irreducible fractions *)
Definition red (x : t) : t :=
match x with
| Qz z => x
| Qq n d => norm n d
end.
Class Reduced x := is_reduced : [red x] = [x].
Theorem spec_red : forall x, [red x] == [x].
Proof.
intros [ z | n d ].
auto with qarith.
unfold red.
apply spec_norm.
Qed.
Theorem strong_spec_red : forall x, [red x] = Qred [x].
Proof.
intros [ z | n d ].
unfold red.
symmetry; apply Qred_identity; simpl; auto with zarith.
unfold red; apply strong_spec_norm.
Qed.
Definition add (x y: t): t :=
match x with
| Qz zx =>
match y with
| Qz zy => Qz (ZZ.add zx zy)
| Qq ny dy =>
if NN.eqb dy NN.zero then x
else Qq (ZZ.add (ZZ.mul zx (Z_of_N dy)) ny) dy
end
| Qq nx dx =>
if NN.eqb dx NN.zero then y
else match y with
| Qz zy => Qq (ZZ.add nx (ZZ.mul zy (Z_of_N dx))) dx
| Qq ny dy =>
if NN.eqb dy NN.zero then x
else
let n := ZZ.add (ZZ.mul nx (Z_of_N dy)) (ZZ.mul ny (Z_of_N dx)) in
let d := NN.mul dx dy in
Qq n d
end
end.
Theorem spec_add : forall x y, [add x y] == [x] + [y].
Proof.
intros [x | nx dx] [y | ny dy]; unfold Qplus; qsimpl;
auto with zarith.
rewrite Pos.mul_1_r, Z2Pos.id; auto.
rewrite Pos.mul_1_r, Z2Pos.id; auto.
rewrite Z.mul_eq_0 in *; intuition.
rewrite Pos2Z.inj_mul, 2 Z2Pos.id; auto.
Qed.
Definition add_norm (x y: t): t :=
match x with
| Qz zx =>
match y with
| Qz zy => Qz (ZZ.add zx zy)
| Qq ny dy =>
if NN.eqb dy NN.zero then x
else norm (ZZ.add (ZZ.mul zx (Z_of_N dy)) ny) dy
end
| Qq nx dx =>
if NN.eqb dx NN.zero then y
else match y with
| Qz zy => norm (ZZ.add nx (ZZ.mul zy (Z_of_N dx))) dx
| Qq ny dy =>
if NN.eqb dy NN.zero then x
else
let n := ZZ.add (ZZ.mul nx (Z_of_N dy)) (ZZ.mul ny (Z_of_N dx)) in
let d := NN.mul dx dy in
norm n d
end
end.
Theorem spec_add_norm : forall x y, [add_norm x y] == [x] + [y].
Proof.
intros x y; rewrite <- spec_add.
destruct x; destruct y; unfold add_norm, add;
destr_eqb; auto using Qeq_refl, spec_norm.
Qed.
Instance strong_spec_add_norm x y
`(Reduced x, Reduced y) : Reduced (add_norm x y).
Proof.
unfold Reduced; intros.
rewrite strong_spec_red.
rewrite <- (Qred_complete [add x y]);
[ | rewrite spec_add, spec_add_norm; apply Qeq_refl ].
rewrite <- strong_spec_red.
destruct x as [zx|nx dx]; destruct y as [zy|ny dy];
simpl; destr_eqb; nzsimpl; simpl; auto.
Qed.
Definition opp (x: t): t :=
match x with
| Qz zx => Qz (ZZ.opp zx)
| Qq nx dx => Qq (ZZ.opp nx) dx
end.
Theorem strong_spec_opp: forall q, [opp q] = -[q].
Proof.
intros [z | x y]; simpl.
rewrite ZZ.spec_opp; auto.
match goal with |- context[NN.eqb ?X ?Y] =>
generalize (NN.spec_eqb X Y); case NN.eqb
end; auto; rewrite NN.spec_0.
rewrite ZZ.spec_opp; auto.
Qed.
Theorem spec_opp : forall q, [opp q] == -[q].
Proof.
intros; rewrite strong_spec_opp; red; auto.
Qed.
Instance strong_spec_opp_norm q `(Reduced q) : Reduced (opp q).
Proof.
unfold Reduced; intros.
rewrite strong_spec_opp, <- H, !strong_spec_red, <- Qred_opp.
apply Qred_complete; apply spec_opp.
Qed.
Definition sub x y := add x (opp y).
Theorem spec_sub : forall x y, [sub x y] == [x] - [y].
Proof.
intros x y; unfold sub; rewrite spec_add; auto.
rewrite spec_opp; ring.
Qed.
Definition sub_norm x y := add_norm x (opp y).
Theorem spec_sub_norm : forall x y, [sub_norm x y] == [x] - [y].
Proof.
intros x y; unfold sub_norm; rewrite spec_add_norm; auto.
rewrite spec_opp; ring.
Qed.
Instance strong_spec_sub_norm x y
`(Reduced x, Reduced y) : Reduced (sub_norm x y).
Proof.
intros.
unfold sub_norm.
apply strong_spec_add_norm; auto.
apply strong_spec_opp_norm; auto.
Qed.
Definition mul (x y: t): t :=
match x, y with
| Qz zx, Qz zy => Qz (ZZ.mul zx zy)
| Qz zx, Qq ny dy => Qq (ZZ.mul zx ny) dy
| Qq nx dx, Qz zy => Qq (ZZ.mul nx zy) dx
| Qq nx dx, Qq ny dy => Qq (ZZ.mul nx ny) (NN.mul dx dy)
end.
Ltac nsubst :=
match goal with E : NN.to_Z _ = _ |- _ => rewrite E in * end.
Theorem spec_mul : forall x y, [mul x y] == [x] * [y].
Proof.
intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl; qsimpl.
rewrite Pos.mul_1_r, Z2Pos.id; auto.
rewrite Z.mul_eq_0 in *; intuition.
nsubst; auto with zarith.
nsubst; auto with zarith.
nsubst; nzsimpl; auto with zarith.
rewrite Pos2Z.inj_mul, 2 Z2Pos.id; auto.
Qed.
Definition norm_denum n d :=
if NN.eqb d NN.one then Qz n else Qq n d.
Lemma spec_norm_denum : forall n d,
[norm_denum n d] == [Qq n d].
Proof.
unfold norm_denum; intros; simpl; qsimpl.
congruence.
nsubst; auto with zarith.
Qed.
Definition irred n d :=
let gcd := NN.gcd (Zabs_N n) d in
match NN.compare gcd NN.one with
| Gt => (ZZ.div n (Z_of_N gcd), NN.div d gcd)
| _ => (n, d)
end.
Lemma spec_irred : forall n d, exists g,
let (n',d') := irred n d in
(ZZ.to_Z n' * g = ZZ.to_Z n)%Z /\ (NN.to_Z d' * g = NN.to_Z d)%Z.
Proof.
intros.
unfold irred; nzsimpl; simpl.
destr_zcompare.
exists 1%Z; nzsimpl; auto.
exists 0%Z; nzsimpl.
assert (Z.gcd (ZZ.to_Z n) (NN.to_Z d) = 0%Z).
generalize (Z.gcd_nonneg (ZZ.to_Z n) (NN.to_Z d)); romega.
clear H.
split.
symmetry; apply (Z.gcd_eq_0_l _ _ H0).
symmetry; apply (Z.gcd_eq_0_r _ _ H0).
exists (Z.gcd (ZZ.to_Z n) (NN.to_Z d)).
simpl.
split.
nzsimpl.
destruct (Zgcd_is_gcd (ZZ.to_Z n) (NN.to_Z d)).
rewrite Z.mul_comm; symmetry; apply Zdivide_Zdiv_eq; auto with zarith.
nzsimpl.
destruct (Zgcd_is_gcd (ZZ.to_Z n) (NN.to_Z d)).
rewrite Z.mul_comm; symmetry; apply Zdivide_Zdiv_eq; auto with zarith.
Qed.
Lemma spec_irred_zero : forall n d,
(NN.to_Z d = 0)%Z <-> (NN.to_Z (snd (irred n d)) = 0)%Z.
Proof.
intros.
unfold irred.
split.
nzsimpl; intros.
destr_zcompare; auto.
simpl.
nzsimpl.
rewrite H, Zdiv_0_l; auto.
nzsimpl; destr_zcompare; simpl; auto.
nzsimpl.
intros.
generalize (NN.spec_pos d); intros.
destruct (NN.to_Z d); auto.
assert (0 < 0)%Z.
rewrite <- H0 at 2.
apply Zgcd_div_pos; auto with zarith.
compute; auto.
discriminate.
compute in H1; elim H1; auto.
Qed.
Lemma strong_spec_irred : forall n d,
(NN.to_Z d <> 0%Z) ->
let (n',d') := irred n d in Z.gcd (ZZ.to_Z n') (NN.to_Z d') = 1%Z.
Proof.
unfold irred; intros.
nzsimpl.
destr_zcompare; simpl; auto.
elim H.
apply (Z.gcd_eq_0_r (ZZ.to_Z n)).
generalize (Z.gcd_nonneg (ZZ.to_Z n) (NN.to_Z d)); romega.
nzsimpl.
rewrite Zgcd_1_rel_prime.
apply Zis_gcd_rel_prime.
generalize (NN.spec_pos d); romega.
generalize (Z.gcd_nonneg (ZZ.to_Z n) (NN.to_Z d)); romega.
apply Zgcd_is_gcd; auto.
Qed.
Definition mul_norm_Qz_Qq z n d :=
if ZZ.eqb z ZZ.zero then zero
else
let gcd := NN.gcd (Zabs_N z) d in
match NN.compare gcd NN.one with
| Gt =>
let z := ZZ.div z (Z_of_N gcd) in
let d := NN.div d gcd in
norm_denum (ZZ.mul z n) d
| _ => Qq (ZZ.mul z n) d
end.
Definition mul_norm (x y: t): t :=
match x, y with
| Qz zx, Qz zy => Qz (ZZ.mul zx zy)
| Qz zx, Qq ny dy => mul_norm_Qz_Qq zx ny dy
| Qq nx dx, Qz zy => mul_norm_Qz_Qq zy nx dx
| Qq nx dx, Qq ny dy =>
let (nx, dy) := irred nx dy in
let (ny, dx) := irred ny dx in
norm_denum (ZZ.mul ny nx) (NN.mul dx dy)
end.
Lemma spec_mul_norm_Qz_Qq : forall z n d,
[mul_norm_Qz_Qq z n d] == [Qq (ZZ.mul z n) d].
Proof.
intros z n d; unfold mul_norm_Qz_Qq; nzsimpl; rewrite Zcompare_gt.
destr_eqb; nzsimpl; intros Hz.
qsimpl; rewrite Hz; auto.
destruct Z_le_gt_dec as [LE|GT].
qsimpl.
rewrite spec_norm_denum.
qsimpl.
rewrite Zdiv_gcd_zero in GT; auto with zarith.
nsubst. rewrite Zdiv_0_l in *; discriminate.
rewrite <- Z.mul_assoc, (Z.mul_comm (ZZ.to_Z n)), Z.mul_assoc.
rewrite Zgcd_div_swap0; try romega.
ring.
Qed.
Instance strong_spec_mul_norm_Qz_Qq z n d :
forall `(Reduced (Qq n d)), Reduced (mul_norm_Qz_Qq z n d).
Proof.
unfold Reduced.
rewrite 2 strong_spec_red, 2 Qred_iff.
simpl; nzsimpl.
destr_eqb; intros Hd H; simpl in *; nzsimpl.
unfold mul_norm_Qz_Qq; nzsimpl; rewrite Zcompare_gt.
destr_eqb; intros Hz; simpl; nzsimpl; simpl; auto.
destruct Z_le_gt_dec.
simpl; nzsimpl.
destr_eqb; simpl; nzsimpl; auto with zarith.
unfold norm_denum. destr_eqb; simpl; nzsimpl.
rewrite Hd, Zdiv_0_l; discriminate.
intros _.
destr_eqb; simpl; nzsimpl; auto.
nzsimpl; rewrite Hd, Zdiv_0_l; auto with zarith.
rewrite Z2Pos.id in H; auto.
unfold mul_norm_Qz_Qq; nzsimpl; rewrite Zcompare_gt.
destr_eqb; intros Hz; simpl; nzsimpl; simpl; auto.
destruct Z_le_gt_dec as [H'|H'].
simpl; nzsimpl.
destr_eqb; simpl; nzsimpl; auto.
intros.
rewrite Z2Pos.id; auto.
apply Zgcd_mult_rel_prime; auto.
generalize (Z.gcd_eq_0_l (ZZ.to_Z z) (NN.to_Z d))
(Z.gcd_nonneg (ZZ.to_Z z) (NN.to_Z d)); romega.
destr_eqb; simpl; nzsimpl; auto.
unfold norm_denum.
destr_eqb; nzsimpl; simpl; destr_eqb; simpl; auto.
intros; nzsimpl.
rewrite Z2Pos.id; auto.
apply Zgcd_mult_rel_prime.
rewrite Zgcd_1_rel_prime.
apply Zis_gcd_rel_prime.
generalize (NN.spec_pos d); romega.
generalize (Z.gcd_nonneg (ZZ.to_Z z) (NN.to_Z d)); romega.
apply Zgcd_is_gcd.
destruct (Zgcd_is_gcd (ZZ.to_Z z) (NN.to_Z d)) as [ (z0,Hz0) (d0,Hd0) Hzd].
replace (NN.to_Z d / Z.gcd (ZZ.to_Z z) (NN.to_Z d))%Z with d0.
rewrite Zgcd_1_rel_prime in *.
apply bezout_rel_prime.
destruct (rel_prime_bezout _ _ H) as [u v Huv].
apply Bezout_intro with u (v*(Z.gcd (ZZ.to_Z z) (NN.to_Z d)))%Z.
rewrite <- Huv; rewrite Hd0 at 2; ring.
rewrite Hd0 at 1.
symmetry; apply Z_div_mult_full; auto with zarith.
Qed.
Theorem spec_mul_norm : forall x y, [mul_norm x y] == [x] * [y].
Proof.
intros x y; rewrite <- spec_mul; auto.
unfold mul_norm, mul; destruct x; destruct y.
apply Qeq_refl.
apply spec_mul_norm_Qz_Qq.
rewrite spec_mul_norm_Qz_Qq; qsimpl; ring.
rename t0 into nx, t3 into dy, t2 into ny, t1 into dx.
destruct (spec_irred nx dy) as (g & Hg).
destruct (spec_irred ny dx) as (g' & Hg').
assert (Hz := spec_irred_zero nx dy).
assert (Hz':= spec_irred_zero ny dx).
destruct irred as (n1,d1); destruct irred as (n2,d2).
simpl @snd in *; destruct Hg as [Hg1 Hg2]; destruct Hg' as [Hg1' Hg2'].
rewrite spec_norm_denum.
qsimpl.
match goal with E : (_ * _ = 0)%Z |- _ =>
rewrite Z.mul_eq_0 in E; destruct E as [Eq|Eq] end.
rewrite Eq in *; simpl in *.
rewrite <- Hg2' in *; auto with zarith.
rewrite Eq in *; simpl in *.
rewrite <- Hg2 in *; auto with zarith.
match goal with E : (_ * _ = 0)%Z |- _ =>
rewrite Z.mul_eq_0 in E; destruct E as [Eq|Eq] end.
rewrite Hz' in Eq; rewrite Eq in *; auto with zarith.
rewrite Hz in Eq; rewrite Eq in *; auto with zarith.
rewrite <- Hg1, <- Hg2, <- Hg1', <- Hg2'; ring.
Qed.
Instance strong_spec_mul_norm x y :
forall `(Reduced x, Reduced y), Reduced (mul_norm x y).
Proof.
unfold Reduced; intros.
rewrite strong_spec_red, Qred_iff.
destruct x as [zx|nx dx]; destruct y as [zy|ny dy].
simpl in *; auto with zarith.
simpl.
rewrite <- Qred_iff, <- strong_spec_red, strong_spec_mul_norm_Qz_Qq; auto.
simpl.
rewrite <- Qred_iff, <- strong_spec_red, strong_spec_mul_norm_Qz_Qq; auto.
simpl.
destruct (spec_irred nx dy) as [g Hg].
destruct (spec_irred ny dx) as [g' Hg'].
assert (Hz := spec_irred_zero nx dy).
assert (Hz':= spec_irred_zero ny dx).
assert (Hgc := strong_spec_irred nx dy).
assert (Hgc' := strong_spec_irred ny dx).
destruct irred as (n1,d1); destruct irred as (n2,d2).
simpl @snd in *; destruct Hg as [Hg1 Hg2]; destruct Hg' as [Hg1' Hg2'].
unfold norm_denum; qsimpl.
assert (NEQ : NN.to_Z dy <> 0%Z) by
(rewrite Hz; intros EQ; rewrite EQ in *; romega).
specialize (Hgc NEQ).
assert (NEQ' : NN.to_Z dx <> 0%Z) by
(rewrite Hz'; intro EQ; rewrite EQ in *; romega).
specialize (Hgc' NEQ').
revert H H0.
rewrite 2 strong_spec_red, 2 Qred_iff; simpl.
destr_eqb; simpl; nzsimpl; try romega; intros.
rewrite Z2Pos.id in *; auto.
apply Zgcd_mult_rel_prime; rewrite Z.gcd_comm;
apply Zgcd_mult_rel_prime; rewrite Z.gcd_comm; auto.
rewrite Zgcd_1_rel_prime in *.
apply bezout_rel_prime.
destruct (rel_prime_bezout (ZZ.to_Z ny) (NN.to_Z dy)) as [u v Huv]; trivial.
apply Bezout_intro with (u*g')%Z (v*g)%Z.
rewrite <- Huv, <- Hg1', <- Hg2. ring.
rewrite Zgcd_1_rel_prime in *.
apply bezout_rel_prime.
destruct (rel_prime_bezout (ZZ.to_Z nx) (NN.to_Z dx)) as [u v Huv]; trivial.
apply Bezout_intro with (u*g)%Z (v*g')%Z.
rewrite <- Huv, <- Hg2', <- Hg1. ring.
Qed.
Definition inv (x: t): t :=
match x with
| Qz z =>
match ZZ.compare ZZ.zero z with
| Eq => zero
| Lt => Qq ZZ.one (Zabs_N z)
| Gt => Qq ZZ.minus_one (Zabs_N z)
end
| Qq n d =>
match ZZ.compare ZZ.zero n with
| Eq => zero
| Lt => Qq (Z_of_N d) (Zabs_N n)
| Gt => Qq (ZZ.opp (Z_of_N d)) (Zabs_N n)
end
end.
Theorem spec_inv : forall x, [inv x] == /[x].
Proof.
destruct x as [ z | n d ].
(* Qz z *)
simpl.
rewrite ZZ.spec_compare; destr_zcompare.
(* 0 = z *)
rewrite <- H.
simpl; nzsimpl; compute; auto.
(* 0 < z *)
simpl.
destr_eqb; nzsimpl; [ intros; rewrite Z.abs_eq in *; romega | intros _ ].
set (z':=ZZ.to_Z z) in *; clearbody z'.
red; simpl.
rewrite Z.abs_eq by romega.
rewrite Z2Pos.id by auto.
unfold Qinv; simpl; destruct z'; simpl; auto; discriminate.
(* 0 > z *)
simpl.
destr_eqb; nzsimpl; [ intros; rewrite Z.abs_neq in *; romega | intros _ ].
set (z':=ZZ.to_Z z) in *; clearbody z'.
red; simpl.
rewrite Z.abs_neq by romega.
rewrite Z2Pos.id by romega.
unfold Qinv; simpl; destruct z'; simpl; auto; discriminate.
(* Qq n d *)
simpl.
rewrite ZZ.spec_compare; destr_zcompare.
(* 0 = n *)
rewrite <- H.
simpl; nzsimpl.
destr_eqb; intros; compute; auto.
(* 0 < n *)
simpl.
destr_eqb; nzsimpl; intros.
intros; rewrite Z.abs_eq in *; romega.
intros; rewrite Z.abs_eq in *; romega.
nsubst; compute; auto.
set (n':=ZZ.to_Z n) in *; clearbody n'.
rewrite Z.abs_eq by romega.
red; simpl.
rewrite Z2Pos.id by auto.
unfold Qinv; simpl; destruct n'; simpl; auto; try discriminate.
rewrite Pos2Z.inj_mul, Z2Pos.id; auto.
(* 0 > n *)
simpl.
destr_eqb; nzsimpl; intros.
intros; rewrite Z.abs_neq in *; romega.
intros; rewrite Z.abs_neq in *; romega.
nsubst; compute; auto.
set (n':=ZZ.to_Z n) in *; clearbody n'.
red; simpl; nzsimpl.
rewrite Z.abs_neq by romega.
rewrite Z2Pos.id by romega.
unfold Qinv; simpl; destruct n'; simpl; auto; try discriminate.
assert (T : forall x, Zneg x = Z.opp (Zpos x)) by auto.
rewrite T, Pos2Z.inj_mul, Z2Pos.id; auto; ring.
Qed.
Definition inv_norm (x: t): t :=
match x with
| Qz z =>
match ZZ.compare ZZ.zero z with
| Eq => zero
| Lt => Qq ZZ.one (Zabs_N z)
| Gt => Qq ZZ.minus_one (Zabs_N z)
end
| Qq n d =>
if NN.eqb d NN.zero then zero else
match ZZ.compare ZZ.zero n with
| Eq => zero
| Lt =>
match ZZ.compare n ZZ.one with
| Gt => Qq (Z_of_N d) (Zabs_N n)
| _ => Qz (Z_of_N d)
end
| Gt =>
match ZZ.compare n ZZ.minus_one with
| Lt => Qq (ZZ.opp (Z_of_N d)) (Zabs_N n)
| _ => Qz (ZZ.opp (Z_of_N d))
end
end
end.
Theorem spec_inv_norm : forall x, [inv_norm x] == /[x].
Proof.
intros.
rewrite <- spec_inv.
destruct x as [ z | n d ].
(* Qz z *)
simpl.
rewrite ZZ.spec_compare; destr_zcompare; auto with qarith.
(* Qq n d *)
simpl; nzsimpl; destr_eqb.
destr_zcompare; simpl; auto with qarith.
destr_eqb; nzsimpl; auto with qarith.
intros _ Hd; rewrite Hd; auto with qarith.
destr_eqb; nzsimpl; auto with qarith.
intros _ Hd; rewrite Hd; auto with qarith.
(* 0 < n *)
destr_zcompare; auto with qarith.
destr_zcompare; nzsimpl; simpl; auto with qarith; intros.
destr_eqb; nzsimpl; [ intros; rewrite Z.abs_eq in *; romega | intros _ ].
rewrite H0; auto with qarith.
romega.
(* 0 > n *)
destr_zcompare; nzsimpl; simpl; auto with qarith.
destr_eqb; nzsimpl; [ intros; rewrite Z.abs_neq in *; romega | intros _ ].
rewrite H0; auto with qarith.
romega.
Qed.
Instance strong_spec_inv_norm x : Reduced x -> Reduced (inv_norm x).
Proof.
unfold Reduced.
intros.
destruct x as [ z | n d ].
(* Qz *)
simpl; nzsimpl.
rewrite strong_spec_red, Qred_iff.
destr_zcompare; simpl; nzsimpl; auto.
destr_eqb; nzsimpl; simpl; auto.
destr_eqb; nzsimpl; simpl; auto.
(* Qq n d *)
rewrite strong_spec_red, Qred_iff in H; revert H.
simpl; nzsimpl.
destr_eqb; nzsimpl; auto with qarith.
destr_zcompare; simpl; nzsimpl; auto; intros.
(* 0 < n *)
destr_zcompare; simpl; nzsimpl; auto.
destr_eqb; nzsimpl; simpl; auto.
rewrite Z.abs_eq; romega.
intros _.
rewrite strong_spec_norm; simpl; nzsimpl.
destr_eqb; nzsimpl.
rewrite Z.abs_eq; romega.
intros _.
rewrite Qred_iff.
simpl.
rewrite Z.abs_eq; auto with zarith.
rewrite Z2Pos.id in *; auto.
rewrite Z.gcd_comm; auto.
(* 0 > n *)
destr_eqb; nzsimpl; simpl; auto; intros.
destr_zcompare; simpl; nzsimpl; auto.
destr_eqb; nzsimpl.
rewrite Z.abs_neq; romega.
intros _.
rewrite strong_spec_norm; simpl; nzsimpl.
destr_eqb; nzsimpl.
rewrite Z.abs_neq; romega.
intros _.
rewrite Qred_iff.
simpl.
rewrite Z2Pos.id in *; auto.
intros.
rewrite Z.gcd_comm, Z.gcd_abs_l, Z.gcd_comm.
apply Zis_gcd_gcd; auto with zarith.
apply Zis_gcd_minus.
rewrite Z.opp_involutive, <- H1; apply Zgcd_is_gcd.
rewrite Z.abs_neq; romega.
Qed.
Definition div x y := mul x (inv y).
Theorem spec_div x y: [div x y] == [x] / [y].
Proof.
unfold div; rewrite spec_mul; auto.
unfold Qdiv; apply Qmult_comp.
apply Qeq_refl.
apply spec_inv; auto.
Qed.
Definition div_norm x y := mul_norm x (inv_norm y).
Theorem spec_div_norm x y: [div_norm x y] == [x] / [y].
Proof.
unfold div_norm; rewrite spec_mul_norm; auto.
unfold Qdiv; apply Qmult_comp.
apply Qeq_refl.
apply spec_inv_norm; auto.
Qed.
Instance strong_spec_div_norm x y
`(Reduced x, Reduced y) : Reduced (div_norm x y).
Proof.
intros; unfold div_norm.
apply strong_spec_mul_norm; auto.
apply strong_spec_inv_norm; auto.
Qed.
Definition square (x: t): t :=
match x with
| Qz zx => Qz (ZZ.square zx)
| Qq nx dx => Qq (ZZ.square nx) (NN.square dx)
end.
Theorem spec_square : forall x, [square x] == [x] ^ 2.
Proof.
destruct x as [ z | n d ].
simpl; rewrite ZZ.spec_square; red; auto.
simpl.
destr_eqb; nzsimpl; intros.
apply Qeq_refl.
rewrite NN.spec_square in *; nzsimpl.
rewrite Z.mul_eq_0 in *; romega.
rewrite NN.spec_square in *; nzsimpl; nsubst; romega.
rewrite ZZ.spec_square, NN.spec_square.
red; simpl.
rewrite Pos2Z.inj_mul; rewrite !Z2Pos.id; auto.
apply Z.mul_pos_pos; auto.
Qed.
Definition power_pos (x : t) p : t :=
match x with
| Qz zx => Qz (ZZ.pow_pos zx p)
| Qq nx dx => Qq (ZZ.pow_pos nx p) (NN.pow_pos dx p)
end.
Theorem spec_power_pos : forall x p, [power_pos x p] == [x] ^ Zpos p.
Proof.
intros [ z | n d ] p; unfold power_pos.
(* Qz *)
simpl.
rewrite ZZ.spec_pow_pos, Qpower_decomp.
red; simpl; f_equal.
now rewrite Pos2Z.inj_pow, Z.pow_1_l.
(* Qq *)
simpl.
rewrite ZZ.spec_pow_pos.
destr_eqb; nzsimpl; intros.
- apply Qeq_sym; apply Qpower_positive_0.
- rewrite NN.spec_pow_pos in *.
assert (0 < NN.to_Z d ^ ' p)%Z by
(apply Z.pow_pos_nonneg; auto with zarith).
romega.
- exfalso.
rewrite NN.spec_pow_pos in *. nsubst.
rewrite Z.pow_0_l' in *; [romega|discriminate].
- rewrite Qpower_decomp.
red; simpl; do 3 f_equal.
apply Pos2Z.inj. rewrite Pos2Z.inj_pow.
rewrite 2 Z2Pos.id by (generalize (NN.spec_pos d); romega).
now rewrite NN.spec_pow_pos.
Qed.
Instance strong_spec_power_pos x p `(Reduced x) : Reduced (power_pos x p).
Proof.
destruct x as [z | n d]; simpl; intros.
red; simpl; auto.
red; simpl; intros.
rewrite strong_spec_norm; simpl.
destr_eqb; nzsimpl; intros.
simpl; auto.
rewrite Qred_iff.
revert H.
unfold Reduced; rewrite strong_spec_red, Qred_iff; simpl.
destr_eqb; nzsimpl; simpl; intros.
exfalso.
rewrite NN.spec_pow_pos in *. nsubst.
rewrite Z.pow_0_l' in *; [romega|discriminate].
rewrite Z2Pos.id in *; auto.
rewrite NN.spec_pow_pos, ZZ.spec_pow_pos; auto.
rewrite Zgcd_1_rel_prime in *.
apply rel_prime_Zpower; auto with zarith.
Qed.
Definition power (x : t) (z : Z) : t :=
match z with
| Z0 => one
| Zpos p => power_pos x p
| Zneg p => inv (power_pos x p)
end.
Theorem spec_power : forall x z, [power x z] == [x]^z.
Proof.
destruct z.
simpl; nzsimpl; red; auto.
apply spec_power_pos.
simpl.
rewrite spec_inv, spec_power_pos; apply Qeq_refl.
Qed.
Definition power_norm (x : t) (z : Z) : t :=
match z with
| Z0 => one
| Zpos p => power_pos x p
| Zneg p => inv_norm (power_pos x p)
end.
Theorem spec_power_norm : forall x z, [power_norm x z] == [x]^z.
Proof.
destruct z.
simpl; nzsimpl; red; auto.
apply spec_power_pos.
simpl.
rewrite spec_inv_norm, spec_power_pos; apply Qeq_refl.
Qed.
Instance strong_spec_power_norm x z :
Reduced x -> Reduced (power_norm x z).
Proof.
destruct z; simpl.
intros _; unfold Reduced; rewrite strong_spec_red.
unfold one.
simpl to_Q; nzsimpl; auto.
intros; apply strong_spec_power_pos; auto.
intros; apply strong_spec_inv_norm; apply strong_spec_power_pos; auto.
Qed.
(** Interaction with [Qcanon.Qc] *)
Open Scope Qc_scope.
Definition of_Qc q := of_Q (this q).
Definition to_Qc q := Q2Qc [q].
Notation "[[ x ]]" := (to_Qc x).
Theorem strong_spec_of_Qc : forall q, [of_Qc q] = q.
Proof.
intros (q,Hq); intros.
unfold of_Qc; rewrite strong_spec_of_Q; auto.
Qed.
Instance strong_spec_of_Qc_bis q : Reduced (of_Qc q).
Proof.
intros; red; rewrite strong_spec_red, strong_spec_of_Qc.
destruct q; simpl; auto.
Qed.
Theorem spec_of_Qc: forall q, [[of_Qc q]] = q.
Proof.
intros; apply Qc_decomp; simpl; intros.
rewrite strong_spec_of_Qc; auto.
Qed.
Theorem spec_oppc: forall q, [[opp q]] = -[[q]].
Proof.
intros q; unfold Qcopp, to_Qc, Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete.
rewrite spec_opp, <- Qred_opp, Qred_correct.
apply Qeq_refl.
Qed.
Theorem spec_oppc_bis : forall q : Qc, [opp (of_Qc q)] = - q.
Proof.
intros.
rewrite <- strong_spec_opp_norm by apply strong_spec_of_Qc_bis.
rewrite strong_spec_red.
symmetry; apply (Qred_complete (-q)%Q).
rewrite spec_opp, strong_spec_of_Qc; auto with qarith.
Qed.
Theorem spec_comparec: forall q1 q2,
compare q1 q2 = ([[q1]] ?= [[q2]]).
Proof.
unfold Qccompare, to_Qc.
intros q1 q2; rewrite spec_compare; simpl; auto.
apply Qcompare_comp; apply Qeq_sym; apply Qred_correct.
Qed.
Theorem spec_addc x y:
[[add x y]] = [[x]] + [[y]].
Proof.
unfold to_Qc.
transitivity (Q2Qc ([x] + [y])).
unfold Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete; apply spec_add; auto.
unfold Qcplus, Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete.
apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
Qed.
Theorem spec_add_normc x y:
[[add_norm x y]] = [[x]] + [[y]].
Proof.
unfold to_Qc.
transitivity (Q2Qc ([x] + [y])).
unfold Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete; apply spec_add_norm; auto.
unfold Qcplus, Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete.
apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
Qed.
Theorem spec_add_normc_bis : forall x y : Qc,
[add_norm (of_Qc x) (of_Qc y)] = x+y.
Proof.
intros.
rewrite <- strong_spec_add_norm by apply strong_spec_of_Qc_bis.
rewrite strong_spec_red.
symmetry; apply (Qred_complete (x+y)%Q).
rewrite spec_add_norm, ! strong_spec_of_Qc; auto with qarith.
Qed.
Theorem spec_subc x y: [[sub x y]] = [[x]] - [[y]].
Proof.
unfold sub; rewrite spec_addc; auto.
rewrite spec_oppc; ring.
Qed.
Theorem spec_sub_normc x y:
[[sub_norm x y]] = [[x]] - [[y]].
Proof.
unfold sub_norm; rewrite spec_add_normc; auto.
rewrite spec_oppc; ring.
Qed.
Theorem spec_sub_normc_bis : forall x y : Qc,
[sub_norm (of_Qc x) (of_Qc y)] = x-y.
Proof.
intros.
rewrite <- strong_spec_sub_norm by apply strong_spec_of_Qc_bis.
rewrite strong_spec_red.
symmetry; apply (Qred_complete (x+(-y)%Qc)%Q).
rewrite spec_sub_norm, ! strong_spec_of_Qc.
unfold Qcopp, Q2Qc, this. rewrite Qred_correct ; auto with qarith.
Qed.
Theorem spec_mulc x y:
[[mul x y]] = [[x]] * [[y]].
Proof.
unfold to_Qc.
transitivity (Q2Qc ([x] * [y])).
unfold Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete; apply spec_mul; auto.
unfold Qcmult, Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete.
apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
Qed.
Theorem spec_mul_normc x y:
[[mul_norm x y]] = [[x]] * [[y]].
Proof.
unfold to_Qc.
transitivity (Q2Qc ([x] * [y])).
unfold Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete; apply spec_mul_norm; auto.
unfold Qcmult, Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete.
apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
Qed.
Theorem spec_mul_normc_bis : forall x y : Qc,
[mul_norm (of_Qc x) (of_Qc y)] = x*y.
Proof.
intros.
rewrite <- strong_spec_mul_norm by apply strong_spec_of_Qc_bis.
rewrite strong_spec_red.
symmetry; apply (Qred_complete (x*y)%Q).
rewrite spec_mul_norm, ! strong_spec_of_Qc; auto with qarith.
Qed.
Theorem spec_invc x:
[[inv x]] = /[[x]].
Proof.
unfold to_Qc.
transitivity (Q2Qc (/[x])).
unfold Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete; apply spec_inv; auto.
unfold Qcinv, Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete.
apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
Qed.
Theorem spec_inv_normc x:
[[inv_norm x]] = /[[x]].
Proof.
unfold to_Qc.
transitivity (Q2Qc (/[x])).
unfold Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete; apply spec_inv_norm; auto.
unfold Qcinv, Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete.
apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
Qed.
Theorem spec_inv_normc_bis : forall x : Qc,
[inv_norm (of_Qc x)] = /x.
Proof.
intros.
rewrite <- strong_spec_inv_norm by apply strong_spec_of_Qc_bis.
rewrite strong_spec_red.
symmetry; apply (Qred_complete (/x)%Q).
rewrite spec_inv_norm, ! strong_spec_of_Qc; auto with qarith.
Qed.
Theorem spec_divc x y: [[div x y]] = [[x]] / [[y]].
Proof.
unfold div; rewrite spec_mulc; auto.
unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
apply spec_invc; auto.
Qed.
Theorem spec_div_normc x y: [[div_norm x y]] = [[x]] / [[y]].
Proof.
unfold div_norm; rewrite spec_mul_normc; auto.
unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
apply spec_inv_normc; auto.
Qed.
Theorem spec_div_normc_bis : forall x y : Qc,
[div_norm (of_Qc x) (of_Qc y)] = x/y.
Proof.
intros.
rewrite <- strong_spec_div_norm by apply strong_spec_of_Qc_bis.
rewrite strong_spec_red.
symmetry; apply (Qred_complete (x*(/y)%Qc)%Q).
rewrite spec_div_norm, ! strong_spec_of_Qc.
unfold Qcinv, Q2Qc, this; rewrite Qred_correct; auto with qarith.
Qed.
Theorem spec_squarec x: [[square x]] = [[x]]^2.
Proof.
unfold to_Qc.
transitivity (Q2Qc ([x]^2)).
unfold Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete; apply spec_square; auto.
simpl Qcpower.
replace (Q2Qc [x] * 1) with (Q2Qc [x]); try ring.
simpl.
unfold Qcmult, Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete.
apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
Qed.
Theorem spec_power_posc x p:
[[power_pos x p]] = [[x]] ^ Pos.to_nat p.
Proof.
unfold to_Qc.
transitivity (Q2Qc ([x]^Zpos p)).
unfold Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete; apply spec_power_pos; auto.
induction p using Pos.peano_ind.
simpl; ring.
rewrite Pos2Nat.inj_succ; simpl Qcpower.
rewrite <- IHp; clear IHp.
unfold Qcmult, Q2Qc.
apply Qc_decomp; intros _ _; unfold this.
apply Qred_complete.
setoid_replace ([x] ^ ' Pos.succ p)%Q with ([x] * [x] ^ ' p)%Q.
apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
simpl.
rewrite <- Pos.add_1_l.
rewrite Qpower_plus_positive; simpl; apply Qeq_refl.
Qed.
End Make.
|