1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: NSigNAxioms.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
Require Import ZArith Nnat NAxioms NDiv NSig.
(** * The interface [NSig.NType] implies the interface [NAxiomsSig] *)
Module NTypeIsNAxioms (Import N : NType').
Hint Rewrite
spec_0 spec_succ spec_add spec_mul spec_pred spec_sub
spec_div spec_modulo spec_gcd spec_compare spec_eq_bool
spec_max spec_min spec_power_pos spec_power
: nsimpl.
Ltac nsimpl := autorewrite with nsimpl.
Ltac ncongruence := unfold eq; repeat red; intros; nsimpl; congruence.
Ltac zify := unfold eq, lt, le in *; nsimpl.
Local Obligation Tactic := ncongruence.
Instance eq_equiv : Equivalence eq.
Proof. unfold eq. firstorder. Qed.
Program Instance succ_wd : Proper (eq==>eq) succ.
Program Instance pred_wd : Proper (eq==>eq) pred.
Program Instance add_wd : Proper (eq==>eq==>eq) add.
Program Instance sub_wd : Proper (eq==>eq==>eq) sub.
Program Instance mul_wd : Proper (eq==>eq==>eq) mul.
Theorem pred_succ : forall n, pred (succ n) == n.
Proof.
intros. zify. generalize (spec_pos n); omega with *.
Qed.
Definition N_of_Z z := of_N (Zabs_N z).
Section Induction.
Variable A : N.t -> Prop.
Hypothesis A_wd : Proper (eq==>iff) A.
Hypothesis A0 : A 0.
Hypothesis AS : forall n, A n <-> A (succ n).
Let B (z : Z) := A (N_of_Z z).
Lemma B0 : B 0.
Proof.
unfold B, N_of_Z; simpl.
rewrite <- (A_wd 0); auto.
red; rewrite spec_0, spec_of_N; auto.
Qed.
Lemma BS : forall z : Z, (0 <= z)%Z -> B z -> B (z + 1).
Proof.
intros z H1 H2.
unfold B in *. apply -> AS in H2.
setoid_replace (N_of_Z (z + 1)) with (succ (N_of_Z z)); auto.
unfold eq. rewrite spec_succ.
unfold N_of_Z.
rewrite 2 spec_of_N, 2 Z_of_N_abs, 2 Zabs_eq; auto with zarith.
Qed.
Lemma B_holds : forall z : Z, (0 <= z)%Z -> B z.
Proof.
exact (natlike_ind B B0 BS).
Qed.
Theorem bi_induction : forall n, A n.
Proof.
intro n. setoid_replace n with (N_of_Z (to_Z n)).
apply B_holds. apply spec_pos.
red; unfold N_of_Z.
rewrite spec_of_N, Z_of_N_abs, Zabs_eq; auto.
apply spec_pos.
Qed.
End Induction.
Theorem add_0_l : forall n, 0 + n == n.
Proof.
intros. zify. auto with zarith.
Qed.
Theorem add_succ_l : forall n m, (succ n) + m == succ (n + m).
Proof.
intros. zify. auto with zarith.
Qed.
Theorem sub_0_r : forall n, n - 0 == n.
Proof.
intros. zify. generalize (spec_pos n); omega with *.
Qed.
Theorem sub_succ_r : forall n m, n - (succ m) == pred (n - m).
Proof.
intros. zify. omega with *.
Qed.
Theorem mul_0_l : forall n, 0 * n == 0.
Proof.
intros. zify. auto with zarith.
Qed.
Theorem mul_succ_l : forall n m, (succ n) * m == n * m + m.
Proof.
intros. zify. ring.
Qed.
(** Order *)
Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
Proof.
intros. zify. destruct (Zcompare_spec [x] [y]); auto.
Qed.
Definition eqb := eq_bool.
Lemma eqb_eq : forall x y, eq_bool x y = true <-> x == y.
Proof.
intros. zify. symmetry. apply Zeq_is_eq_bool.
Qed.
Instance compare_wd : Proper (eq ==> eq ==> Logic.eq) compare.
Proof.
intros x x' Hx y y' Hy. rewrite 2 spec_compare, Hx, Hy; intuition.
Qed.
Instance lt_wd : Proper (eq ==> eq ==> iff) lt.
Proof.
intros x x' Hx y y' Hy; unfold lt; rewrite Hx, Hy; intuition.
Qed.
Theorem lt_eq_cases : forall n m, n <= m <-> n < m \/ n == m.
Proof.
intros. zify. omega.
Qed.
Theorem lt_irrefl : forall n, ~ n < n.
Proof.
intros. zify. omega.
Qed.
Theorem lt_succ_r : forall n m, n < (succ m) <-> n <= m.
Proof.
intros. zify. omega.
Qed.
Theorem min_l : forall n m, n <= m -> min n m == n.
Proof.
intros n m. zify. omega with *.
Qed.
Theorem min_r : forall n m, m <= n -> min n m == m.
Proof.
intros n m. zify. omega with *.
Qed.
Theorem max_l : forall n m, m <= n -> max n m == n.
Proof.
intros n m. zify. omega with *.
Qed.
Theorem max_r : forall n m, n <= m -> max n m == m.
Proof.
intros n m. zify. omega with *.
Qed.
(** Properties specific to natural numbers, not integers. *)
Theorem pred_0 : pred 0 == 0.
Proof.
zify. auto.
Qed.
Program Instance div_wd : Proper (eq==>eq==>eq) div.
Program Instance mod_wd : Proper (eq==>eq==>eq) modulo.
Theorem div_mod : forall a b, ~b==0 -> a == b*(div a b) + (modulo a b).
Proof.
intros a b. zify. intros. apply Z_div_mod_eq_full; auto.
Qed.
Theorem mod_upper_bound : forall a b, ~b==0 -> modulo a b < b.
Proof.
intros a b. zify. intros.
destruct (Z_mod_lt [a] [b]); auto.
generalize (spec_pos b); auto with zarith.
Qed.
Definition recursion (A : Type) (a : A) (f : N.t -> A -> A) (n : N.t) :=
Nrect (fun _ => A) a (fun n a => f (N.of_N n) a) (N.to_N n).
Implicit Arguments recursion [A].
Instance recursion_wd (A : Type) (Aeq : relation A) :
Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) (@recursion A).
Proof.
unfold eq.
intros a a' Eaa' f f' Eff' x x' Exx'.
unfold recursion.
unfold N.to_N.
rewrite <- Exx'; clear x' Exx'.
replace (Zabs_N [x]) with (N_of_nat (Zabs_nat [x])).
induction (Zabs_nat [x]).
simpl; auto.
rewrite N_of_S, 2 Nrect_step; auto. apply Eff'; auto.
destruct [x]; simpl; auto.
change (nat_of_P p) with (nat_of_N (Npos p)); apply N_of_nat_of_N.
change (nat_of_P p) with (nat_of_N (Npos p)); apply N_of_nat_of_N.
Qed.
Theorem recursion_0 :
forall (A : Type) (a : A) (f : N.t -> A -> A), recursion a f 0 = a.
Proof.
intros A a f; unfold recursion, N.to_N; rewrite N.spec_0; simpl; auto.
Qed.
Theorem recursion_succ :
forall (A : Type) (Aeq : relation A) (a : A) (f : N.t -> A -> A),
Aeq a a -> Proper (eq==>Aeq==>Aeq) f ->
forall n, Aeq (recursion a f (succ n)) (f n (recursion a f n)).
Proof.
unfold N.eq, recursion; intros A Aeq a f EAaa f_wd n.
replace (N.to_N (succ n)) with (Nsucc (N.to_N n)).
rewrite Nrect_step.
apply f_wd; auto.
unfold N.to_N.
rewrite N.spec_of_N, Z_of_N_abs, Zabs_eq; auto.
apply N.spec_pos.
fold (recursion a f n).
apply recursion_wd; auto.
red; auto.
unfold N.to_N.
rewrite N.spec_succ.
change ([n]+1)%Z with (Zsucc [n]).
apply Z_of_N_eq_rev.
rewrite Z_of_N_succ.
rewrite 2 Z_of_N_abs.
rewrite 2 Zabs_eq; auto.
generalize (spec_pos n); auto with zarith.
apply spec_pos; auto.
Qed.
End NTypeIsNAxioms.
Module NType_NAxioms (N : NType)
<: NAxiomsSig <: NDivSig <: HasCompare N <: HasEqBool N <: HasMinMax N
:= N <+ NTypeIsNAxioms.
|